Numerical simulation of steady state heat transfer in a ceramic-coated gas turbine blade
As gas turbine entry temperature (TET) increases, thermal loading on first stage blades increases and, therefore, a variety of cooling techniques and thermal barrier coatings (TBCs) are used. In the present work, steady state blade heat transfer mechanisms were studied via numerical simulations. Con...
Gespeichert in:
Veröffentlicht in: | International journal of heat and mass transfer 2002-11, Vol.45 (24), p.4831-4845 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4845 |
---|---|
container_issue | 24 |
container_start_page | 4831 |
container_title | International journal of heat and mass transfer |
container_volume | 45 |
creator | Asok Kumar, N Kale, S.R |
description | As gas turbine entry temperature (TET) increases, thermal loading on first stage blades increases and, therefore, a variety of cooling techniques and thermal barrier coatings (TBCs) are used. In the present work, steady state blade heat transfer mechanisms were studied via numerical simulations. Convection and radiation to the blade external surface were modeled for a super alloy blade with and without a TBC. The effects of surface emissivity changes, partial TBC coatings and uncertainties in external heat transfer coefficient were also simulated. The results show that at 1500 K TET, radiation heat transfer rate from gas to an uncoated blade is 8.4% of total heat transfer rate which decreases to 3.4% in the presence of a TBC. The TBC blocks radiation, suppresses metal temperatures and reduces heat loss to the coolant. These effects are more pronounced at higher TETs. With selective coating, substantial local temperature suppression occurs. In the presence of radiation and/or TBC, the uncertainties in convection heat transfer coefficient do not have a significant effect on metal temperatures. |
doi_str_mv | 10.1016/S0017-9310(02)00190-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27596580</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0017931002001904</els_id><sourcerecordid>27596580</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-61a82696d81e79adbae93364b73144dfe347f3393fd029bb8fc82b2ec38926db3</originalsourceid><addsrcrecordid>eNqFkMtLHTEUh4NY8Pr4E4RslHYxNY-5mWQlRaoWpF2o4C6cSU5syjw0yQj-9-Z6pV12dTjw_c7jI-SYs6-ccXV2yxjvGiM5-8zEl9oY1rQ7ZMV1ZxrBtdklq7_IHtnP-c-mZa1akYefy4gpOhhojuMyQInzROdAc0Hwr7VAQfobodCSYMoBE40TBeowwRhd4-YKePoImZYl9XFC2g_g8ZB8CjBkPPqoB-T-8vvdxXVz8-vqx8W3m8a1gpVGcdBCGeU1x86A7wGNlKrtO8nb1geUbRekNDJ4Jkzf6-C06AU6qY1QvpcH5HQ79ynNzwvmYseYHQ4DTDgv2YpubdRaswqut6BLc84Jg31KcYT0ajmzG4_23aPdSLJM2HePtq25k48FkKumUC24mP-F6yFcKF258y2H9duXiMlmF3Fy6GNCV6yf4382vQH7NIdB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27596580</pqid></control><display><type>article</type><title>Numerical simulation of steady state heat transfer in a ceramic-coated gas turbine blade</title><source>Elsevier ScienceDirect Journals</source><creator>Asok Kumar, N ; Kale, S.R</creator><creatorcontrib>Asok Kumar, N ; Kale, S.R</creatorcontrib><description>As gas turbine entry temperature (TET) increases, thermal loading on first stage blades increases and, therefore, a variety of cooling techniques and thermal barrier coatings (TBCs) are used. In the present work, steady state blade heat transfer mechanisms were studied via numerical simulations. Convection and radiation to the blade external surface were modeled for a super alloy blade with and without a TBC. The effects of surface emissivity changes, partial TBC coatings and uncertainties in external heat transfer coefficient were also simulated. The results show that at 1500 K TET, radiation heat transfer rate from gas to an uncoated blade is 8.4% of total heat transfer rate which decreases to 3.4% in the presence of a TBC. The TBC blocks radiation, suppresses metal temperatures and reduces heat loss to the coolant. These effects are more pronounced at higher TETs. With selective coating, substantial local temperature suppression occurs. In the presence of radiation and/or TBC, the uncertainties in convection heat transfer coefficient do not have a significant effect on metal temperatures.</description><identifier>ISSN: 0017-9310</identifier><identifier>EISSN: 1879-2189</identifier><identifier>DOI: 10.1016/S0017-9310(02)00190-4</identifier><identifier>CODEN: IJHMAK</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; Energy ; Energy. Thermal use of fuels ; Engines and turbines ; Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc ; Exact sciences and technology ; Gas turbine blade ; Heat transfer ; Radiation ; Simulation ; Thermal barrier coating ; Uncertainties</subject><ispartof>International journal of heat and mass transfer, 2002-11, Vol.45 (24), p.4831-4845</ispartof><rights>2002</rights><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c420t-61a82696d81e79adbae93364b73144dfe347f3393fd029bb8fc82b2ec38926db3</citedby><cites>FETCH-LOGICAL-c420t-61a82696d81e79adbae93364b73144dfe347f3393fd029bb8fc82b2ec38926db3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0017931002001904$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=13891268$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Asok Kumar, N</creatorcontrib><creatorcontrib>Kale, S.R</creatorcontrib><title>Numerical simulation of steady state heat transfer in a ceramic-coated gas turbine blade</title><title>International journal of heat and mass transfer</title><description>As gas turbine entry temperature (TET) increases, thermal loading on first stage blades increases and, therefore, a variety of cooling techniques and thermal barrier coatings (TBCs) are used. In the present work, steady state blade heat transfer mechanisms were studied via numerical simulations. Convection and radiation to the blade external surface were modeled for a super alloy blade with and without a TBC. The effects of surface emissivity changes, partial TBC coatings and uncertainties in external heat transfer coefficient were also simulated. The results show that at 1500 K TET, radiation heat transfer rate from gas to an uncoated blade is 8.4% of total heat transfer rate which decreases to 3.4% in the presence of a TBC. The TBC blocks radiation, suppresses metal temperatures and reduces heat loss to the coolant. These effects are more pronounced at higher TETs. With selective coating, substantial local temperature suppression occurs. In the presence of radiation and/or TBC, the uncertainties in convection heat transfer coefficient do not have a significant effect on metal temperatures.</description><subject>Applied sciences</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Engines and turbines</subject><subject>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</subject><subject>Exact sciences and technology</subject><subject>Gas turbine blade</subject><subject>Heat transfer</subject><subject>Radiation</subject><subject>Simulation</subject><subject>Thermal barrier coating</subject><subject>Uncertainties</subject><issn>0017-9310</issn><issn>1879-2189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqFkMtLHTEUh4NY8Pr4E4RslHYxNY-5mWQlRaoWpF2o4C6cSU5syjw0yQj-9-Z6pV12dTjw_c7jI-SYs6-ccXV2yxjvGiM5-8zEl9oY1rQ7ZMV1ZxrBtdklq7_IHtnP-c-mZa1akYefy4gpOhhojuMyQInzROdAc0Hwr7VAQfobodCSYMoBE40TBeowwRhd4-YKePoImZYl9XFC2g_g8ZB8CjBkPPqoB-T-8vvdxXVz8-vqx8W3m8a1gpVGcdBCGeU1x86A7wGNlKrtO8nb1geUbRekNDJ4Jkzf6-C06AU6qY1QvpcH5HQ79ynNzwvmYseYHQ4DTDgv2YpubdRaswqut6BLc84Jg31KcYT0ajmzG4_23aPdSLJM2HePtq25k48FkKumUC24mP-F6yFcKF258y2H9duXiMlmF3Fy6GNCV6yf4382vQH7NIdB</recordid><startdate>20021101</startdate><enddate>20021101</enddate><creator>Asok Kumar, N</creator><creator>Kale, S.R</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope></search><sort><creationdate>20021101</creationdate><title>Numerical simulation of steady state heat transfer in a ceramic-coated gas turbine blade</title><author>Asok Kumar, N ; Kale, S.R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-61a82696d81e79adbae93364b73144dfe347f3393fd029bb8fc82b2ec38926db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Applied sciences</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Engines and turbines</topic><topic>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</topic><topic>Exact sciences and technology</topic><topic>Gas turbine blade</topic><topic>Heat transfer</topic><topic>Radiation</topic><topic>Simulation</topic><topic>Thermal barrier coating</topic><topic>Uncertainties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Asok Kumar, N</creatorcontrib><creatorcontrib>Kale, S.R</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><jtitle>International journal of heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Asok Kumar, N</au><au>Kale, S.R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical simulation of steady state heat transfer in a ceramic-coated gas turbine blade</atitle><jtitle>International journal of heat and mass transfer</jtitle><date>2002-11-01</date><risdate>2002</risdate><volume>45</volume><issue>24</issue><spage>4831</spage><epage>4845</epage><pages>4831-4845</pages><issn>0017-9310</issn><eissn>1879-2189</eissn><coden>IJHMAK</coden><abstract>As gas turbine entry temperature (TET) increases, thermal loading on first stage blades increases and, therefore, a variety of cooling techniques and thermal barrier coatings (TBCs) are used. In the present work, steady state blade heat transfer mechanisms were studied via numerical simulations. Convection and radiation to the blade external surface were modeled for a super alloy blade with and without a TBC. The effects of surface emissivity changes, partial TBC coatings and uncertainties in external heat transfer coefficient were also simulated. The results show that at 1500 K TET, radiation heat transfer rate from gas to an uncoated blade is 8.4% of total heat transfer rate which decreases to 3.4% in the presence of a TBC. The TBC blocks radiation, suppresses metal temperatures and reduces heat loss to the coolant. These effects are more pronounced at higher TETs. With selective coating, substantial local temperature suppression occurs. In the presence of radiation and/or TBC, the uncertainties in convection heat transfer coefficient do not have a significant effect on metal temperatures.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/S0017-9310(02)00190-4</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0017-9310 |
ispartof | International journal of heat and mass transfer, 2002-11, Vol.45 (24), p.4831-4845 |
issn | 0017-9310 1879-2189 |
language | eng |
recordid | cdi_proquest_miscellaneous_27596580 |
source | Elsevier ScienceDirect Journals |
subjects | Applied sciences Energy Energy. Thermal use of fuels Engines and turbines Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc Exact sciences and technology Gas turbine blade Heat transfer Radiation Simulation Thermal barrier coating Uncertainties |
title | Numerical simulation of steady state heat transfer in a ceramic-coated gas turbine blade |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T16%3A18%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20simulation%20of%20steady%20state%20heat%20transfer%20in%20a%20ceramic-coated%20gas%20turbine%20blade&rft.jtitle=International%20journal%20of%20heat%20and%20mass%20transfer&rft.au=Asok%20Kumar,%20N&rft.date=2002-11-01&rft.volume=45&rft.issue=24&rft.spage=4831&rft.epage=4845&rft.pages=4831-4845&rft.issn=0017-9310&rft.eissn=1879-2189&rft.coden=IJHMAK&rft_id=info:doi/10.1016/S0017-9310(02)00190-4&rft_dat=%3Cproquest_cross%3E27596580%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27596580&rft_id=info:pmid/&rft_els_id=S0017931002001904&rfr_iscdi=true |