Numerical simulation of steady state heat transfer in a ceramic-coated gas turbine blade

As gas turbine entry temperature (TET) increases, thermal loading on first stage blades increases and, therefore, a variety of cooling techniques and thermal barrier coatings (TBCs) are used. In the present work, steady state blade heat transfer mechanisms were studied via numerical simulations. Con...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of heat and mass transfer 2002-11, Vol.45 (24), p.4831-4845
Hauptverfasser: Asok Kumar, N, Kale, S.R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4845
container_issue 24
container_start_page 4831
container_title International journal of heat and mass transfer
container_volume 45
creator Asok Kumar, N
Kale, S.R
description As gas turbine entry temperature (TET) increases, thermal loading on first stage blades increases and, therefore, a variety of cooling techniques and thermal barrier coatings (TBCs) are used. In the present work, steady state blade heat transfer mechanisms were studied via numerical simulations. Convection and radiation to the blade external surface were modeled for a super alloy blade with and without a TBC. The effects of surface emissivity changes, partial TBC coatings and uncertainties in external heat transfer coefficient were also simulated. The results show that at 1500 K TET, radiation heat transfer rate from gas to an uncoated blade is 8.4% of total heat transfer rate which decreases to 3.4% in the presence of a TBC. The TBC blocks radiation, suppresses metal temperatures and reduces heat loss to the coolant. These effects are more pronounced at higher TETs. With selective coating, substantial local temperature suppression occurs. In the presence of radiation and/or TBC, the uncertainties in convection heat transfer coefficient do not have a significant effect on metal temperatures.
doi_str_mv 10.1016/S0017-9310(02)00190-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27596580</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0017931002001904</els_id><sourcerecordid>27596580</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-61a82696d81e79adbae93364b73144dfe347f3393fd029bb8fc82b2ec38926db3</originalsourceid><addsrcrecordid>eNqFkMtLHTEUh4NY8Pr4E4RslHYxNY-5mWQlRaoWpF2o4C6cSU5syjw0yQj-9-Z6pV12dTjw_c7jI-SYs6-ccXV2yxjvGiM5-8zEl9oY1rQ7ZMV1ZxrBtdklq7_IHtnP-c-mZa1akYefy4gpOhhojuMyQInzROdAc0Hwr7VAQfobodCSYMoBE40TBeowwRhd4-YKePoImZYl9XFC2g_g8ZB8CjBkPPqoB-T-8vvdxXVz8-vqx8W3m8a1gpVGcdBCGeU1x86A7wGNlKrtO8nb1geUbRekNDJ4Jkzf6-C06AU6qY1QvpcH5HQ79ynNzwvmYseYHQ4DTDgv2YpubdRaswqut6BLc84Jg31KcYT0ajmzG4_23aPdSLJM2HePtq25k48FkKumUC24mP-F6yFcKF258y2H9duXiMlmF3Fy6GNCV6yf4382vQH7NIdB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27596580</pqid></control><display><type>article</type><title>Numerical simulation of steady state heat transfer in a ceramic-coated gas turbine blade</title><source>Elsevier ScienceDirect Journals</source><creator>Asok Kumar, N ; Kale, S.R</creator><creatorcontrib>Asok Kumar, N ; Kale, S.R</creatorcontrib><description>As gas turbine entry temperature (TET) increases, thermal loading on first stage blades increases and, therefore, a variety of cooling techniques and thermal barrier coatings (TBCs) are used. In the present work, steady state blade heat transfer mechanisms were studied via numerical simulations. Convection and radiation to the blade external surface were modeled for a super alloy blade with and without a TBC. The effects of surface emissivity changes, partial TBC coatings and uncertainties in external heat transfer coefficient were also simulated. The results show that at 1500 K TET, radiation heat transfer rate from gas to an uncoated blade is 8.4% of total heat transfer rate which decreases to 3.4% in the presence of a TBC. The TBC blocks radiation, suppresses metal temperatures and reduces heat loss to the coolant. These effects are more pronounced at higher TETs. With selective coating, substantial local temperature suppression occurs. In the presence of radiation and/or TBC, the uncertainties in convection heat transfer coefficient do not have a significant effect on metal temperatures.</description><identifier>ISSN: 0017-9310</identifier><identifier>EISSN: 1879-2189</identifier><identifier>DOI: 10.1016/S0017-9310(02)00190-4</identifier><identifier>CODEN: IJHMAK</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; Energy ; Energy. Thermal use of fuels ; Engines and turbines ; Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc ; Exact sciences and technology ; Gas turbine blade ; Heat transfer ; Radiation ; Simulation ; Thermal barrier coating ; Uncertainties</subject><ispartof>International journal of heat and mass transfer, 2002-11, Vol.45 (24), p.4831-4845</ispartof><rights>2002</rights><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c420t-61a82696d81e79adbae93364b73144dfe347f3393fd029bb8fc82b2ec38926db3</citedby><cites>FETCH-LOGICAL-c420t-61a82696d81e79adbae93364b73144dfe347f3393fd029bb8fc82b2ec38926db3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0017931002001904$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=13891268$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Asok Kumar, N</creatorcontrib><creatorcontrib>Kale, S.R</creatorcontrib><title>Numerical simulation of steady state heat transfer in a ceramic-coated gas turbine blade</title><title>International journal of heat and mass transfer</title><description>As gas turbine entry temperature (TET) increases, thermal loading on first stage blades increases and, therefore, a variety of cooling techniques and thermal barrier coatings (TBCs) are used. In the present work, steady state blade heat transfer mechanisms were studied via numerical simulations. Convection and radiation to the blade external surface were modeled for a super alloy blade with and without a TBC. The effects of surface emissivity changes, partial TBC coatings and uncertainties in external heat transfer coefficient were also simulated. The results show that at 1500 K TET, radiation heat transfer rate from gas to an uncoated blade is 8.4% of total heat transfer rate which decreases to 3.4% in the presence of a TBC. The TBC blocks radiation, suppresses metal temperatures and reduces heat loss to the coolant. These effects are more pronounced at higher TETs. With selective coating, substantial local temperature suppression occurs. In the presence of radiation and/or TBC, the uncertainties in convection heat transfer coefficient do not have a significant effect on metal temperatures.</description><subject>Applied sciences</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Engines and turbines</subject><subject>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</subject><subject>Exact sciences and technology</subject><subject>Gas turbine blade</subject><subject>Heat transfer</subject><subject>Radiation</subject><subject>Simulation</subject><subject>Thermal barrier coating</subject><subject>Uncertainties</subject><issn>0017-9310</issn><issn>1879-2189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqFkMtLHTEUh4NY8Pr4E4RslHYxNY-5mWQlRaoWpF2o4C6cSU5syjw0yQj-9-Z6pV12dTjw_c7jI-SYs6-ccXV2yxjvGiM5-8zEl9oY1rQ7ZMV1ZxrBtdklq7_IHtnP-c-mZa1akYefy4gpOhhojuMyQInzROdAc0Hwr7VAQfobodCSYMoBE40TBeowwRhd4-YKePoImZYl9XFC2g_g8ZB8CjBkPPqoB-T-8vvdxXVz8-vqx8W3m8a1gpVGcdBCGeU1x86A7wGNlKrtO8nb1geUbRekNDJ4Jkzf6-C06AU6qY1QvpcH5HQ79ynNzwvmYseYHQ4DTDgv2YpubdRaswqut6BLc84Jg31KcYT0ajmzG4_23aPdSLJM2HePtq25k48FkKumUC24mP-F6yFcKF258y2H9duXiMlmF3Fy6GNCV6yf4382vQH7NIdB</recordid><startdate>20021101</startdate><enddate>20021101</enddate><creator>Asok Kumar, N</creator><creator>Kale, S.R</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope></search><sort><creationdate>20021101</creationdate><title>Numerical simulation of steady state heat transfer in a ceramic-coated gas turbine blade</title><author>Asok Kumar, N ; Kale, S.R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-61a82696d81e79adbae93364b73144dfe347f3393fd029bb8fc82b2ec38926db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Applied sciences</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Engines and turbines</topic><topic>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</topic><topic>Exact sciences and technology</topic><topic>Gas turbine blade</topic><topic>Heat transfer</topic><topic>Radiation</topic><topic>Simulation</topic><topic>Thermal barrier coating</topic><topic>Uncertainties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Asok Kumar, N</creatorcontrib><creatorcontrib>Kale, S.R</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><jtitle>International journal of heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Asok Kumar, N</au><au>Kale, S.R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical simulation of steady state heat transfer in a ceramic-coated gas turbine blade</atitle><jtitle>International journal of heat and mass transfer</jtitle><date>2002-11-01</date><risdate>2002</risdate><volume>45</volume><issue>24</issue><spage>4831</spage><epage>4845</epage><pages>4831-4845</pages><issn>0017-9310</issn><eissn>1879-2189</eissn><coden>IJHMAK</coden><abstract>As gas turbine entry temperature (TET) increases, thermal loading on first stage blades increases and, therefore, a variety of cooling techniques and thermal barrier coatings (TBCs) are used. In the present work, steady state blade heat transfer mechanisms were studied via numerical simulations. Convection and radiation to the blade external surface were modeled for a super alloy blade with and without a TBC. The effects of surface emissivity changes, partial TBC coatings and uncertainties in external heat transfer coefficient were also simulated. The results show that at 1500 K TET, radiation heat transfer rate from gas to an uncoated blade is 8.4% of total heat transfer rate which decreases to 3.4% in the presence of a TBC. The TBC blocks radiation, suppresses metal temperatures and reduces heat loss to the coolant. These effects are more pronounced at higher TETs. With selective coating, substantial local temperature suppression occurs. In the presence of radiation and/or TBC, the uncertainties in convection heat transfer coefficient do not have a significant effect on metal temperatures.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/S0017-9310(02)00190-4</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0017-9310
ispartof International journal of heat and mass transfer, 2002-11, Vol.45 (24), p.4831-4845
issn 0017-9310
1879-2189
language eng
recordid cdi_proquest_miscellaneous_27596580
source Elsevier ScienceDirect Journals
subjects Applied sciences
Energy
Energy. Thermal use of fuels
Engines and turbines
Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc
Exact sciences and technology
Gas turbine blade
Heat transfer
Radiation
Simulation
Thermal barrier coating
Uncertainties
title Numerical simulation of steady state heat transfer in a ceramic-coated gas turbine blade
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T16%3A18%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20simulation%20of%20steady%20state%20heat%20transfer%20in%20a%20ceramic-coated%20gas%20turbine%20blade&rft.jtitle=International%20journal%20of%20heat%20and%20mass%20transfer&rft.au=Asok%20Kumar,%20N&rft.date=2002-11-01&rft.volume=45&rft.issue=24&rft.spage=4831&rft.epage=4845&rft.pages=4831-4845&rft.issn=0017-9310&rft.eissn=1879-2189&rft.coden=IJHMAK&rft_id=info:doi/10.1016/S0017-9310(02)00190-4&rft_dat=%3Cproquest_cross%3E27596580%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27596580&rft_id=info:pmid/&rft_els_id=S0017931002001904&rfr_iscdi=true