Markov chain models of parallel genetic algorithms

Implementations of parallel genetic algorithms (GA) with multiple populations are common, but they introduce several parameters whose effect on the quality of the search is not well understood. Parameters such as the number of populations, their size, the topology of communications, and the migratio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on evolutionary computation 2000-09, Vol.4 (3), p.216-226
1. Verfasser: Cantu-Paz, E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 226
container_issue 3
container_start_page 216
container_title IEEE transactions on evolutionary computation
container_volume 4
creator Cantu-Paz, E.
description Implementations of parallel genetic algorithms (GA) with multiple populations are common, but they introduce several parameters whose effect on the quality of the search is not well understood. Parameters such as the number of populations, their size, the topology of communications, and the migration rate have to be set carefully to reach adequate solutions. This paper presents models that predict the effects of the parallel GA parameters on its search quality. The paper reviews some recent results on the case where each population is connected to all the others and the migration rate is set to the maximum value possible. This bounding case is the simplest to analyze, and it introduces the methodology that is used in the remainder of the paper to analyze parallel GA with arbitrary migration rates and communication topologies. This investigation considers that migration occurs only after each population converges; then, incoming individuals are incorporated into the populations and the algorithm restarts. The models find the probability that each population converges to the correct solution after each restart, and also calculate the long-run chance of success. The accuracy of the models is verified with experiments using one additively decomposable function.
doi_str_mv 10.1109/4235.873233
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_27594497</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>873233</ieee_id><sourcerecordid>914637707</sourcerecordid><originalsourceid>FETCH-LOGICAL-c399t-5115fb7fda412eb41fdee4b57fb639ed44c2919478c6151141c3974981c5336c3</originalsourceid><addsrcrecordid>eNqF0c1LwzAYBvAiCs7pyZunoqAH6cxnkxxl-AUTLwreQpomW2fWzKQT_O9N6VDwoKcE8nsfkjxZdgzBBEIgrgjCdMIZRhjvZCMoCCwAQOVu2gMuCsb46352EOMSAEgoFKMMParw5j9yvVBNm698bVzMvc3XKijnjMvnpjVdo3Pl5j403WIVD7M9q1w0R9t1nL3c3jxP74vZ093D9HpWaCxEV1AIqa2YrRWByFQE2toYUlFmqxILUxOikUhXZFyXMGEC0xwjgkNNMS41HmcXQ-46-PeNiZ1cNVEb51Rr_CZKAUmJGQMsyfM_JeIEISTA_5BRQYjoE09_waXfhDY9V3JOAUGA8IQuB6SDjzEYK9ehWanwKSGQfR-y70MOfSR9to1UUStng2p1E79HePoB1KuTQTXGmJ_DIeILjcWOyw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>885042048</pqid></control><display><type>article</type><title>Markov chain models of parallel genetic algorithms</title><source>IEEE Electronic Library (IEL)</source><creator>Cantu-Paz, E.</creator><creatorcontrib>Cantu-Paz, E.</creatorcontrib><description>Implementations of parallel genetic algorithms (GA) with multiple populations are common, but they introduce several parameters whose effect on the quality of the search is not well understood. Parameters such as the number of populations, their size, the topology of communications, and the migration rate have to be set carefully to reach adequate solutions. This paper presents models that predict the effects of the parallel GA parameters on its search quality. The paper reviews some recent results on the case where each population is connected to all the others and the migration rate is set to the maximum value possible. This bounding case is the simplest to analyze, and it introduces the methodology that is used in the remainder of the paper to analyze parallel GA with arbitrary migration rates and communication topologies. This investigation considers that migration occurs only after each population converges; then, incoming individuals are incorporated into the populations and the algorithm restarts. The models find the probability that each population converges to the correct solution after each restart, and also calculate the long-run chance of success. The accuracy of the models is verified with experiments using one additively decomposable function.</description><identifier>ISSN: 1089-778X</identifier><identifier>EISSN: 1941-0026</identifier><identifier>DOI: 10.1109/4235.873233</identifier><identifier>CODEN: ITEVF5</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algorithms ; Applied sciences ; Computer science ; Contracts ; Exact sciences and technology ; General topology ; Genetic algorithms ; Guidelines ; Mathematical analysis ; Mathematical methods in physics ; Mathematical models ; Mathematics ; Migration ; Numerical approximation and analysis ; Numerical optimization ; Operational research and scientific management ; Operational research. Management science ; Optimization. Search problems ; Physics ; Populations ; Predictive models ; Probability ; Sciences and techniques of general use ; Scientific computing ; Searching ; Stochastic processes ; Studies ; Time measurement ; Topology ; Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</subject><ispartof>IEEE transactions on evolutionary computation, 2000-09, Vol.4 (3), p.216-226</ispartof><rights>2001 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2000</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c399t-5115fb7fda412eb41fdee4b57fb639ed44c2919478c6151141c3974981c5336c3</citedby><cites>FETCH-LOGICAL-c399t-5115fb7fda412eb41fdee4b57fb639ed44c2919478c6151141c3974981c5336c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/873233$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/873233$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=811423$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Cantu-Paz, E.</creatorcontrib><title>Markov chain models of parallel genetic algorithms</title><title>IEEE transactions on evolutionary computation</title><addtitle>TEVC</addtitle><description>Implementations of parallel genetic algorithms (GA) with multiple populations are common, but they introduce several parameters whose effect on the quality of the search is not well understood. Parameters such as the number of populations, their size, the topology of communications, and the migration rate have to be set carefully to reach adequate solutions. This paper presents models that predict the effects of the parallel GA parameters on its search quality. The paper reviews some recent results on the case where each population is connected to all the others and the migration rate is set to the maximum value possible. This bounding case is the simplest to analyze, and it introduces the methodology that is used in the remainder of the paper to analyze parallel GA with arbitrary migration rates and communication topologies. This investigation considers that migration occurs only after each population converges; then, incoming individuals are incorporated into the populations and the algorithm restarts. The models find the probability that each population converges to the correct solution after each restart, and also calculate the long-run chance of success. The accuracy of the models is verified with experiments using one additively decomposable function.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Computer science</subject><subject>Contracts</subject><subject>Exact sciences and technology</subject><subject>General topology</subject><subject>Genetic algorithms</subject><subject>Guidelines</subject><subject>Mathematical analysis</subject><subject>Mathematical methods in physics</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Migration</subject><subject>Numerical approximation and analysis</subject><subject>Numerical optimization</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Optimization. Search problems</subject><subject>Physics</subject><subject>Populations</subject><subject>Predictive models</subject><subject>Probability</subject><subject>Sciences and techniques of general use</subject><subject>Scientific computing</subject><subject>Searching</subject><subject>Stochastic processes</subject><subject>Studies</subject><subject>Time measurement</subject><subject>Topology</subject><subject>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</subject><issn>1089-778X</issn><issn>1941-0026</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqF0c1LwzAYBvAiCs7pyZunoqAH6cxnkxxl-AUTLwreQpomW2fWzKQT_O9N6VDwoKcE8nsfkjxZdgzBBEIgrgjCdMIZRhjvZCMoCCwAQOVu2gMuCsb46352EOMSAEgoFKMMParw5j9yvVBNm698bVzMvc3XKijnjMvnpjVdo3Pl5j403WIVD7M9q1w0R9t1nL3c3jxP74vZ093D9HpWaCxEV1AIqa2YrRWByFQE2toYUlFmqxILUxOikUhXZFyXMGEC0xwjgkNNMS41HmcXQ-46-PeNiZ1cNVEb51Rr_CZKAUmJGQMsyfM_JeIEISTA_5BRQYjoE09_waXfhDY9V3JOAUGA8IQuB6SDjzEYK9ehWanwKSGQfR-y70MOfSR9to1UUStng2p1E79HePoB1KuTQTXGmJ_DIeILjcWOyw</recordid><startdate>20000901</startdate><enddate>20000901</enddate><creator>Cantu-Paz, E.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20000901</creationdate><title>Markov chain models of parallel genetic algorithms</title><author>Cantu-Paz, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c399t-5115fb7fda412eb41fdee4b57fb639ed44c2919478c6151141c3974981c5336c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Computer science</topic><topic>Contracts</topic><topic>Exact sciences and technology</topic><topic>General topology</topic><topic>Genetic algorithms</topic><topic>Guidelines</topic><topic>Mathematical analysis</topic><topic>Mathematical methods in physics</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Migration</topic><topic>Numerical approximation and analysis</topic><topic>Numerical optimization</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Optimization. Search problems</topic><topic>Physics</topic><topic>Populations</topic><topic>Predictive models</topic><topic>Probability</topic><topic>Sciences and techniques of general use</topic><topic>Scientific computing</topic><topic>Searching</topic><topic>Stochastic processes</topic><topic>Studies</topic><topic>Time measurement</topic><topic>Topology</topic><topic>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cantu-Paz, E.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on evolutionary computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cantu-Paz, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Markov chain models of parallel genetic algorithms</atitle><jtitle>IEEE transactions on evolutionary computation</jtitle><stitle>TEVC</stitle><date>2000-09-01</date><risdate>2000</risdate><volume>4</volume><issue>3</issue><spage>216</spage><epage>226</epage><pages>216-226</pages><issn>1089-778X</issn><eissn>1941-0026</eissn><coden>ITEVF5</coden><abstract>Implementations of parallel genetic algorithms (GA) with multiple populations are common, but they introduce several parameters whose effect on the quality of the search is not well understood. Parameters such as the number of populations, their size, the topology of communications, and the migration rate have to be set carefully to reach adequate solutions. This paper presents models that predict the effects of the parallel GA parameters on its search quality. The paper reviews some recent results on the case where each population is connected to all the others and the migration rate is set to the maximum value possible. This bounding case is the simplest to analyze, and it introduces the methodology that is used in the remainder of the paper to analyze parallel GA with arbitrary migration rates and communication topologies. This investigation considers that migration occurs only after each population converges; then, incoming individuals are incorporated into the populations and the algorithm restarts. The models find the probability that each population converges to the correct solution after each restart, and also calculate the long-run chance of success. The accuracy of the models is verified with experiments using one additively decomposable function.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/4235.873233</doi><tpages>11</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1089-778X
ispartof IEEE transactions on evolutionary computation, 2000-09, Vol.4 (3), p.216-226
issn 1089-778X
1941-0026
language eng
recordid cdi_proquest_miscellaneous_27594497
source IEEE Electronic Library (IEL)
subjects Algorithms
Applied sciences
Computer science
Contracts
Exact sciences and technology
General topology
Genetic algorithms
Guidelines
Mathematical analysis
Mathematical methods in physics
Mathematical models
Mathematics
Migration
Numerical approximation and analysis
Numerical optimization
Operational research and scientific management
Operational research. Management science
Optimization. Search problems
Physics
Populations
Predictive models
Probability
Sciences and techniques of general use
Scientific computing
Searching
Stochastic processes
Studies
Time measurement
Topology
Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds
title Markov chain models of parallel genetic algorithms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T05%3A57%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Markov%20chain%20models%20of%20parallel%20genetic%20algorithms&rft.jtitle=IEEE%20transactions%20on%20evolutionary%20computation&rft.au=Cantu-Paz,%20E.&rft.date=2000-09-01&rft.volume=4&rft.issue=3&rft.spage=216&rft.epage=226&rft.pages=216-226&rft.issn=1089-778X&rft.eissn=1941-0026&rft.coden=ITEVF5&rft_id=info:doi/10.1109/4235.873233&rft_dat=%3Cproquest_RIE%3E914637707%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=885042048&rft_id=info:pmid/&rft_ieee_id=873233&rfr_iscdi=true