Implementation of exact non-reflecting boundary conditions in the finite element method for the time-dependent wave equation
When solving the wave equation in infinite regions using finite element methods, the domain must be truncated. We investigate the accuracy of time-dependent non-reflecting boundary conditions (NRBC) derived in Grote, Keller (1995), when implemented in the finite element method. The NRBC annihilate t...
Gespeichert in:
Veröffentlicht in: | Computer methods in applied mechanics and engineering 2000-01, Vol.187 (1), p.137-159 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 159 |
---|---|
container_issue | 1 |
container_start_page | 137 |
container_title | Computer methods in applied mechanics and engineering |
container_volume | 187 |
creator | Thompson, Lonny L Huan, Runnong |
description | When solving the wave equation in infinite regions using finite element methods, the domain must be truncated. We investigate the accuracy of time-dependent non-reflecting boundary conditions (NRBC) derived in Grote, Keller (1995), when implemented in the finite element method. The NRBC annihilate the first
N wave harmonics on a spherical truncation boundary. High-order temporal derivatives are formulated as a system of first-order ordinary differential equations. Several versions of implicit and explicit multi-step, time-integration schemes are presented for solution of the finite element equations concurrently with the first-order system appearing in the NRBC. An alternative scaling of the boundary variables is introduced which leads to a well-conditioned coefficient matrix. Although the boundary conditions are global over the boundary, when implemented in the finite element method, they only require inner products of spherical harmonics within the force vector, and as a result, they are easy to implement and do not disturb the banded/sparse structure of the matrix equations. Several numerical examples are presented which demonstrate the improvement in accuracy over standard finite element methods. |
doi_str_mv | 10.1016/S0045-7825(99)00114-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27594413</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045782599001140</els_id><sourcerecordid>27594413</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-aab452da13749fe04460142dad03440ff7c5fbfa27287952bd4dbc84af2a27803</originalsourceid><addsrcrecordid>eNqFkE9rGzEQxUVpoG7aj1DQIYTksK3-rXf3FIJpG4MhhyRnoZVGscKuZEtymkI_fLS2SY6dy8DMb-bxHkLfKPlOCZ3_uCNE1FXTsvqi6y4JoVRU5AOa0bbpKkZ5-xHN3pBP6HNKT6RUS9kM_VuOmwFG8FllFzwOFsOL0hn74KsIdgCdnX_Efdh5o-JfrIM3bkITdh7nNWDrvMuA4fAGj5DXwWAb4n6b3QiVgQ14M23_qOeCbnd7tS_oxKohwddjP0UPv37eL26q1e3v5eJ6VWk-b3KlVC9qZhTljegsECHmhIoyMIQLQaxtdG17q1jDiuOa9UaYXrdCWVZmLeGn6PzwdxPDdgcpy9ElDcOgPIRdkqypOyEoL2B9AHUMKRX7chPdWGxLSuSUtdxnLacgZdfJfdZyEjg7Cqik1WCj8tql92PezTlvCnZ1wKCYfXYQZdIOvAbjYslZmuD-I_QKe7eVpQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27594413</pqid></control><display><type>article</type><title>Implementation of exact non-reflecting boundary conditions in the finite element method for the time-dependent wave equation</title><source>Access via ScienceDirect (Elsevier)</source><creator>Thompson, Lonny L ; Huan, Runnong</creator><creatorcontrib>Thompson, Lonny L ; Huan, Runnong</creatorcontrib><description>When solving the wave equation in infinite regions using finite element methods, the domain must be truncated. We investigate the accuracy of time-dependent non-reflecting boundary conditions (NRBC) derived in Grote, Keller (1995), when implemented in the finite element method. The NRBC annihilate the first
N wave harmonics on a spherical truncation boundary. High-order temporal derivatives are formulated as a system of first-order ordinary differential equations. Several versions of implicit and explicit multi-step, time-integration schemes are presented for solution of the finite element equations concurrently with the first-order system appearing in the NRBC. An alternative scaling of the boundary variables is introduced which leads to a well-conditioned coefficient matrix. Although the boundary conditions are global over the boundary, when implemented in the finite element method, they only require inner products of spherical harmonics within the force vector, and as a result, they are easy to implement and do not disturb the banded/sparse structure of the matrix equations. Several numerical examples are presented which demonstrate the improvement in accuracy over standard finite element methods.</description><identifier>ISSN: 0045-7825</identifier><identifier>EISSN: 1879-2138</identifier><identifier>DOI: 10.1016/S0045-7825(99)00114-0</identifier><identifier>CODEN: CMMECC</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Computational techniques ; Exact sciences and technology ; Finite-element and galerkin methods ; Mathematical methods in physics ; Physics</subject><ispartof>Computer methods in applied mechanics and engineering, 2000-01, Vol.187 (1), p.137-159</ispartof><rights>2000 Elsevier Science S.A.</rights><rights>2000 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-aab452da13749fe04460142dad03440ff7c5fbfa27287952bd4dbc84af2a27803</citedby><cites>FETCH-LOGICAL-c367t-aab452da13749fe04460142dad03440ff7c5fbfa27287952bd4dbc84af2a27803</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0045-7825(99)00114-0$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1396337$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Thompson, Lonny L</creatorcontrib><creatorcontrib>Huan, Runnong</creatorcontrib><title>Implementation of exact non-reflecting boundary conditions in the finite element method for the time-dependent wave equation</title><title>Computer methods in applied mechanics and engineering</title><description>When solving the wave equation in infinite regions using finite element methods, the domain must be truncated. We investigate the accuracy of time-dependent non-reflecting boundary conditions (NRBC) derived in Grote, Keller (1995), when implemented in the finite element method. The NRBC annihilate the first
N wave harmonics on a spherical truncation boundary. High-order temporal derivatives are formulated as a system of first-order ordinary differential equations. Several versions of implicit and explicit multi-step, time-integration schemes are presented for solution of the finite element equations concurrently with the first-order system appearing in the NRBC. An alternative scaling of the boundary variables is introduced which leads to a well-conditioned coefficient matrix. Although the boundary conditions are global over the boundary, when implemented in the finite element method, they only require inner products of spherical harmonics within the force vector, and as a result, they are easy to implement and do not disturb the banded/sparse structure of the matrix equations. Several numerical examples are presented which demonstrate the improvement in accuracy over standard finite element methods.</description><subject>Computational techniques</subject><subject>Exact sciences and technology</subject><subject>Finite-element and galerkin methods</subject><subject>Mathematical methods in physics</subject><subject>Physics</subject><issn>0045-7825</issn><issn>1879-2138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNqFkE9rGzEQxUVpoG7aj1DQIYTksK3-rXf3FIJpG4MhhyRnoZVGscKuZEtymkI_fLS2SY6dy8DMb-bxHkLfKPlOCZ3_uCNE1FXTsvqi6y4JoVRU5AOa0bbpKkZ5-xHN3pBP6HNKT6RUS9kM_VuOmwFG8FllFzwOFsOL0hn74KsIdgCdnX_Efdh5o-JfrIM3bkITdh7nNWDrvMuA4fAGj5DXwWAb4n6b3QiVgQ14M23_qOeCbnd7tS_oxKohwddjP0UPv37eL26q1e3v5eJ6VWk-b3KlVC9qZhTljegsECHmhIoyMIQLQaxtdG17q1jDiuOa9UaYXrdCWVZmLeGn6PzwdxPDdgcpy9ElDcOgPIRdkqypOyEoL2B9AHUMKRX7chPdWGxLSuSUtdxnLacgZdfJfdZyEjg7Cqik1WCj8tql92PezTlvCnZ1wKCYfXYQZdIOvAbjYslZmuD-I_QKe7eVpQ</recordid><startdate>20000101</startdate><enddate>20000101</enddate><creator>Thompson, Lonny L</creator><creator>Huan, Runnong</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20000101</creationdate><title>Implementation of exact non-reflecting boundary conditions in the finite element method for the time-dependent wave equation</title><author>Thompson, Lonny L ; Huan, Runnong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-aab452da13749fe04460142dad03440ff7c5fbfa27287952bd4dbc84af2a27803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Computational techniques</topic><topic>Exact sciences and technology</topic><topic>Finite-element and galerkin methods</topic><topic>Mathematical methods in physics</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thompson, Lonny L</creatorcontrib><creatorcontrib>Huan, Runnong</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer methods in applied mechanics and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thompson, Lonny L</au><au>Huan, Runnong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Implementation of exact non-reflecting boundary conditions in the finite element method for the time-dependent wave equation</atitle><jtitle>Computer methods in applied mechanics and engineering</jtitle><date>2000-01-01</date><risdate>2000</risdate><volume>187</volume><issue>1</issue><spage>137</spage><epage>159</epage><pages>137-159</pages><issn>0045-7825</issn><eissn>1879-2138</eissn><coden>CMMECC</coden><abstract>When solving the wave equation in infinite regions using finite element methods, the domain must be truncated. We investigate the accuracy of time-dependent non-reflecting boundary conditions (NRBC) derived in Grote, Keller (1995), when implemented in the finite element method. The NRBC annihilate the first
N wave harmonics on a spherical truncation boundary. High-order temporal derivatives are formulated as a system of first-order ordinary differential equations. Several versions of implicit and explicit multi-step, time-integration schemes are presented for solution of the finite element equations concurrently with the first-order system appearing in the NRBC. An alternative scaling of the boundary variables is introduced which leads to a well-conditioned coefficient matrix. Although the boundary conditions are global over the boundary, when implemented in the finite element method, they only require inner products of spherical harmonics within the force vector, and as a result, they are easy to implement and do not disturb the banded/sparse structure of the matrix equations. Several numerical examples are presented which demonstrate the improvement in accuracy over standard finite element methods.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/S0045-7825(99)00114-0</doi><tpages>23</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0045-7825 |
ispartof | Computer methods in applied mechanics and engineering, 2000-01, Vol.187 (1), p.137-159 |
issn | 0045-7825 1879-2138 |
language | eng |
recordid | cdi_proquest_miscellaneous_27594413 |
source | Access via ScienceDirect (Elsevier) |
subjects | Computational techniques Exact sciences and technology Finite-element and galerkin methods Mathematical methods in physics Physics |
title | Implementation of exact non-reflecting boundary conditions in the finite element method for the time-dependent wave equation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T11%3A06%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Implementation%20of%20exact%20non-reflecting%20boundary%20conditions%20in%20the%20finite%20element%20method%20for%20the%20time-dependent%20wave%20equation&rft.jtitle=Computer%20methods%20in%20applied%20mechanics%20and%20engineering&rft.au=Thompson,%20Lonny%20L&rft.date=2000-01-01&rft.volume=187&rft.issue=1&rft.spage=137&rft.epage=159&rft.pages=137-159&rft.issn=0045-7825&rft.eissn=1879-2138&rft.coden=CMMECC&rft_id=info:doi/10.1016/S0045-7825(99)00114-0&rft_dat=%3Cproquest_cross%3E27594413%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27594413&rft_id=info:pmid/&rft_els_id=S0045782599001140&rfr_iscdi=true |