Learning string-edit distance

In many applications, it is necessary to determine the similarity of two strings. A widely-used notion of string similarity is the edit distance: the minimum number of insertions, deletions, and substitutions required to transform one string into the other. In this report, we provide a stochastic mo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence 1998-05, Vol.20 (5), p.522-532
Hauptverfasser: Ristad, E.S., Yianilos, P.N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In many applications, it is necessary to determine the similarity of two strings. A widely-used notion of string similarity is the edit distance: the minimum number of insertions, deletions, and substitutions required to transform one string into the other. In this report, we provide a stochastic model for string-edit distance. Our stochastic model allows us to learn a string-edit distance function from a corpus of examples. We illustrate the utility of our approach by applying it to the difficult problem of learning the pronunciation of words in conversational speech. In this application, we learn a string-edit distance with nearly one-fifth the error rate of the untrained Levenshtein distance. Our approach is applicable to any string classification problem that may be solved using a similarity function against a database of labeled prototypes.
ISSN:0162-8828
1939-3539
DOI:10.1109/34.682181