One Size Does Not Fit All: Methodological Considerations for Brain-Based Predictive Modeling in Psychiatry

Psychiatric illnesses are heterogeneous in nature. No illness manifests in the same way across individuals, and no two patients with a shared diagnosis exhibit identical symptom profiles. Over the last several decades, group-level analyses of in vivo neuroimaging data have led to fundamental advance...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biological psychiatry (1969) 2023-04, Vol.93 (8), p.717-728
Hauptverfasser: Dhamala, Elvisha, Yeo, B.T. Thomas, Holmes, Avram J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 728
container_issue 8
container_start_page 717
container_title Biological psychiatry (1969)
container_volume 93
creator Dhamala, Elvisha
Yeo, B.T. Thomas
Holmes, Avram J.
description Psychiatric illnesses are heterogeneous in nature. No illness manifests in the same way across individuals, and no two patients with a shared diagnosis exhibit identical symptom profiles. Over the last several decades, group-level analyses of in vivo neuroimaging data have led to fundamental advances in our understanding of the neurobiology of psychiatric illnesses. More recently, access to computational resources and large, publicly available datasets alongside the rise of predictive modeling and precision medicine approaches have facilitated the study of psychiatric illnesses at an individual level. Data-driven machine learning analyses can be applied to identify disease-relevant biological subtypes, predict individual symptom profiles, and recommend personalized therapeutic interventions. However, when developing these predictive models, methodological choices must be carefully considered to ensure accurate, robust, and interpretable results. Choices pertaining to algorithms, neuroimaging modalities and states, data transformation, phenotypes, parcellations, sample sizes, and populations we are specifically studying can influence model performance. Here, we review applications of neuroimaging-based machine learning models to study psychiatric illnesses and discuss the effects of different methodological choices on model performance. An understanding of these effects is crucial for the proper implementation of predictive models in psychiatry and will facilitate more accurate diagnoses, prognoses, and therapeutics.
doi_str_mv 10.1016/j.biopsych.2022.09.024
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2759267207</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006322322016328</els_id><sourcerecordid>2759267207</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-9f56c61e1a1eb3c065fc2d680fde54372f28c4f40f8721bb1fb08d5f257af8a73</originalsourceid><addsrcrecordid>eNqFkEFv1DAQhS0EokvhL1Q-ckmwJ4md5US7pYDU0krA2XLscTurbLzY3krLryerbblymhnpvXkzH2NnUtRSSPVhXQ8Ut3nvHmoQALVY1gLaF2whe91U0Ap4yRZCCFU1AM0Je5Pzeh41gHzNThrVaa2adsHWtxPyH_QH-WXEzL_Hwq-o8PNx_MhvsDxEH8d4T86OfBWnTB6TLTR3PMTEL5KlqbqwGT2_S-jJFXpEfhM9jjTdc5r43eFGsiXt37JXwY4Z3z3VU_br6vPP1dfq-vbLt9X5deVaqUq1DJ1ySqK0EofGCdUFB171Injs2kZDgN61oRWh1yCHQYZB9L4L0GkbequbU_b-uHeb4u8d5mI2lB2Oo50w7rIB3S1BaRAHqTpKXYo5Jwxmm2hj095IYQ6czdo8czYHzkYszcx5Np49ZeyGDfp_tmews-DTUYDzp4-EyWRHOLmZUUJXjI_0v4y_a1-S3w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2759267207</pqid></control><display><type>article</type><title>One Size Does Not Fit All: Methodological Considerations for Brain-Based Predictive Modeling in Psychiatry</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Dhamala, Elvisha ; Yeo, B.T. Thomas ; Holmes, Avram J.</creator><creatorcontrib>Dhamala, Elvisha ; Yeo, B.T. Thomas ; Holmes, Avram J.</creatorcontrib><description>Psychiatric illnesses are heterogeneous in nature. No illness manifests in the same way across individuals, and no two patients with a shared diagnosis exhibit identical symptom profiles. Over the last several decades, group-level analyses of in vivo neuroimaging data have led to fundamental advances in our understanding of the neurobiology of psychiatric illnesses. More recently, access to computational resources and large, publicly available datasets alongside the rise of predictive modeling and precision medicine approaches have facilitated the study of psychiatric illnesses at an individual level. Data-driven machine learning analyses can be applied to identify disease-relevant biological subtypes, predict individual symptom profiles, and recommend personalized therapeutic interventions. However, when developing these predictive models, methodological choices must be carefully considered to ensure accurate, robust, and interpretable results. Choices pertaining to algorithms, neuroimaging modalities and states, data transformation, phenotypes, parcellations, sample sizes, and populations we are specifically studying can influence model performance. Here, we review applications of neuroimaging-based machine learning models to study psychiatric illnesses and discuss the effects of different methodological choices on model performance. An understanding of these effects is crucial for the proper implementation of predictive models in psychiatry and will facilitate more accurate diagnoses, prognoses, and therapeutics.</description><identifier>ISSN: 0006-3223</identifier><identifier>EISSN: 1873-2402</identifier><identifier>DOI: 10.1016/j.biopsych.2022.09.024</identifier><identifier>PMID: 36577634</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Algorithms ; Biomarkers ; Brain ; Brain - diagnostic imaging ; Machine Learning ; Neuroimaging ; Neuroimaging - methods ; Precision Medicine ; Predictive modeling ; Psychiatry - methods</subject><ispartof>Biological psychiatry (1969), 2023-04, Vol.93 (8), p.717-728</ispartof><rights>2022 Society of Biological Psychiatry</rights><rights>Copyright © 2022 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c416t-9f56c61e1a1eb3c065fc2d680fde54372f28c4f40f8721bb1fb08d5f257af8a73</citedby><cites>FETCH-LOGICAL-c416t-9f56c61e1a1eb3c065fc2d680fde54372f28c4f40f8721bb1fb08d5f257af8a73</cites><orcidid>0000-0001-6583-803X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.biopsych.2022.09.024$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36577634$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dhamala, Elvisha</creatorcontrib><creatorcontrib>Yeo, B.T. Thomas</creatorcontrib><creatorcontrib>Holmes, Avram J.</creatorcontrib><title>One Size Does Not Fit All: Methodological Considerations for Brain-Based Predictive Modeling in Psychiatry</title><title>Biological psychiatry (1969)</title><addtitle>Biol Psychiatry</addtitle><description>Psychiatric illnesses are heterogeneous in nature. No illness manifests in the same way across individuals, and no two patients with a shared diagnosis exhibit identical symptom profiles. Over the last several decades, group-level analyses of in vivo neuroimaging data have led to fundamental advances in our understanding of the neurobiology of psychiatric illnesses. More recently, access to computational resources and large, publicly available datasets alongside the rise of predictive modeling and precision medicine approaches have facilitated the study of psychiatric illnesses at an individual level. Data-driven machine learning analyses can be applied to identify disease-relevant biological subtypes, predict individual symptom profiles, and recommend personalized therapeutic interventions. However, when developing these predictive models, methodological choices must be carefully considered to ensure accurate, robust, and interpretable results. Choices pertaining to algorithms, neuroimaging modalities and states, data transformation, phenotypes, parcellations, sample sizes, and populations we are specifically studying can influence model performance. Here, we review applications of neuroimaging-based machine learning models to study psychiatric illnesses and discuss the effects of different methodological choices on model performance. An understanding of these effects is crucial for the proper implementation of predictive models in psychiatry and will facilitate more accurate diagnoses, prognoses, and therapeutics.</description><subject>Algorithms</subject><subject>Biomarkers</subject><subject>Brain</subject><subject>Brain - diagnostic imaging</subject><subject>Machine Learning</subject><subject>Neuroimaging</subject><subject>Neuroimaging - methods</subject><subject>Precision Medicine</subject><subject>Predictive modeling</subject><subject>Psychiatry - methods</subject><issn>0006-3223</issn><issn>1873-2402</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkEFv1DAQhS0EokvhL1Q-ckmwJ4md5US7pYDU0krA2XLscTurbLzY3krLryerbblymhnpvXkzH2NnUtRSSPVhXQ8Ut3nvHmoQALVY1gLaF2whe91U0Ap4yRZCCFU1AM0Je5Pzeh41gHzNThrVaa2adsHWtxPyH_QH-WXEzL_Hwq-o8PNx_MhvsDxEH8d4T86OfBWnTB6TLTR3PMTEL5KlqbqwGT2_S-jJFXpEfhM9jjTdc5r43eFGsiXt37JXwY4Z3z3VU_br6vPP1dfq-vbLt9X5deVaqUq1DJ1ySqK0EofGCdUFB171Injs2kZDgN61oRWh1yCHQYZB9L4L0GkbequbU_b-uHeb4u8d5mI2lB2Oo50w7rIB3S1BaRAHqTpKXYo5Jwxmm2hj095IYQ6czdo8czYHzkYszcx5Np49ZeyGDfp_tmews-DTUYDzp4-EyWRHOLmZUUJXjI_0v4y_a1-S3w</recordid><startdate>20230415</startdate><enddate>20230415</enddate><creator>Dhamala, Elvisha</creator><creator>Yeo, B.T. Thomas</creator><creator>Holmes, Avram J.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6583-803X</orcidid></search><sort><creationdate>20230415</creationdate><title>One Size Does Not Fit All: Methodological Considerations for Brain-Based Predictive Modeling in Psychiatry</title><author>Dhamala, Elvisha ; Yeo, B.T. Thomas ; Holmes, Avram J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-9f56c61e1a1eb3c065fc2d680fde54372f28c4f40f8721bb1fb08d5f257af8a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Biomarkers</topic><topic>Brain</topic><topic>Brain - diagnostic imaging</topic><topic>Machine Learning</topic><topic>Neuroimaging</topic><topic>Neuroimaging - methods</topic><topic>Precision Medicine</topic><topic>Predictive modeling</topic><topic>Psychiatry - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dhamala, Elvisha</creatorcontrib><creatorcontrib>Yeo, B.T. Thomas</creatorcontrib><creatorcontrib>Holmes, Avram J.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biological psychiatry (1969)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dhamala, Elvisha</au><au>Yeo, B.T. Thomas</au><au>Holmes, Avram J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>One Size Does Not Fit All: Methodological Considerations for Brain-Based Predictive Modeling in Psychiatry</atitle><jtitle>Biological psychiatry (1969)</jtitle><addtitle>Biol Psychiatry</addtitle><date>2023-04-15</date><risdate>2023</risdate><volume>93</volume><issue>8</issue><spage>717</spage><epage>728</epage><pages>717-728</pages><issn>0006-3223</issn><eissn>1873-2402</eissn><abstract>Psychiatric illnesses are heterogeneous in nature. No illness manifests in the same way across individuals, and no two patients with a shared diagnosis exhibit identical symptom profiles. Over the last several decades, group-level analyses of in vivo neuroimaging data have led to fundamental advances in our understanding of the neurobiology of psychiatric illnesses. More recently, access to computational resources and large, publicly available datasets alongside the rise of predictive modeling and precision medicine approaches have facilitated the study of psychiatric illnesses at an individual level. Data-driven machine learning analyses can be applied to identify disease-relevant biological subtypes, predict individual symptom profiles, and recommend personalized therapeutic interventions. However, when developing these predictive models, methodological choices must be carefully considered to ensure accurate, robust, and interpretable results. Choices pertaining to algorithms, neuroimaging modalities and states, data transformation, phenotypes, parcellations, sample sizes, and populations we are specifically studying can influence model performance. Here, we review applications of neuroimaging-based machine learning models to study psychiatric illnesses and discuss the effects of different methodological choices on model performance. An understanding of these effects is crucial for the proper implementation of predictive models in psychiatry and will facilitate more accurate diagnoses, prognoses, and therapeutics.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>36577634</pmid><doi>10.1016/j.biopsych.2022.09.024</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-6583-803X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-3223
ispartof Biological psychiatry (1969), 2023-04, Vol.93 (8), p.717-728
issn 0006-3223
1873-2402
language eng
recordid cdi_proquest_miscellaneous_2759267207
source MEDLINE; ScienceDirect Journals (5 years ago - present)
subjects Algorithms
Biomarkers
Brain
Brain - diagnostic imaging
Machine Learning
Neuroimaging
Neuroimaging - methods
Precision Medicine
Predictive modeling
Psychiatry - methods
title One Size Does Not Fit All: Methodological Considerations for Brain-Based Predictive Modeling in Psychiatry
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T11%3A58%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=One%20Size%20Does%20Not%20Fit%20All:%20Methodological%20Considerations%20for%20Brain-Based%20Predictive%20Modeling%20in%20Psychiatry&rft.jtitle=Biological%20psychiatry%20(1969)&rft.au=Dhamala,%20Elvisha&rft.date=2023-04-15&rft.volume=93&rft.issue=8&rft.spage=717&rft.epage=728&rft.pages=717-728&rft.issn=0006-3223&rft.eissn=1873-2402&rft_id=info:doi/10.1016/j.biopsych.2022.09.024&rft_dat=%3Cproquest_cross%3E2759267207%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2759267207&rft_id=info:pmid/36577634&rft_els_id=S0006322322016328&rfr_iscdi=true