One Size Does Not Fit All: Methodological Considerations for Brain-Based Predictive Modeling in Psychiatry
Psychiatric illnesses are heterogeneous in nature. No illness manifests in the same way across individuals, and no two patients with a shared diagnosis exhibit identical symptom profiles. Over the last several decades, group-level analyses of in vivo neuroimaging data have led to fundamental advance...
Gespeichert in:
Veröffentlicht in: | Biological psychiatry (1969) 2023-04, Vol.93 (8), p.717-728 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 728 |
---|---|
container_issue | 8 |
container_start_page | 717 |
container_title | Biological psychiatry (1969) |
container_volume | 93 |
creator | Dhamala, Elvisha Yeo, B.T. Thomas Holmes, Avram J. |
description | Psychiatric illnesses are heterogeneous in nature. No illness manifests in the same way across individuals, and no two patients with a shared diagnosis exhibit identical symptom profiles. Over the last several decades, group-level analyses of in vivo neuroimaging data have led to fundamental advances in our understanding of the neurobiology of psychiatric illnesses. More recently, access to computational resources and large, publicly available datasets alongside the rise of predictive modeling and precision medicine approaches have facilitated the study of psychiatric illnesses at an individual level. Data-driven machine learning analyses can be applied to identify disease-relevant biological subtypes, predict individual symptom profiles, and recommend personalized therapeutic interventions. However, when developing these predictive models, methodological choices must be carefully considered to ensure accurate, robust, and interpretable results. Choices pertaining to algorithms, neuroimaging modalities and states, data transformation, phenotypes, parcellations, sample sizes, and populations we are specifically studying can influence model performance. Here, we review applications of neuroimaging-based machine learning models to study psychiatric illnesses and discuss the effects of different methodological choices on model performance. An understanding of these effects is crucial for the proper implementation of predictive models in psychiatry and will facilitate more accurate diagnoses, prognoses, and therapeutics. |
doi_str_mv | 10.1016/j.biopsych.2022.09.024 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2759267207</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006322322016328</els_id><sourcerecordid>2759267207</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-9f56c61e1a1eb3c065fc2d680fde54372f28c4f40f8721bb1fb08d5f257af8a73</originalsourceid><addsrcrecordid>eNqFkEFv1DAQhS0EokvhL1Q-ckmwJ4md5US7pYDU0krA2XLscTurbLzY3krLryerbblymhnpvXkzH2NnUtRSSPVhXQ8Ut3nvHmoQALVY1gLaF2whe91U0Ap4yRZCCFU1AM0Je5Pzeh41gHzNThrVaa2adsHWtxPyH_QH-WXEzL_Hwq-o8PNx_MhvsDxEH8d4T86OfBWnTB6TLTR3PMTEL5KlqbqwGT2_S-jJFXpEfhM9jjTdc5r43eFGsiXt37JXwY4Z3z3VU_br6vPP1dfq-vbLt9X5deVaqUq1DJ1ySqK0EofGCdUFB171Injs2kZDgN61oRWh1yCHQYZB9L4L0GkbequbU_b-uHeb4u8d5mI2lB2Oo50w7rIB3S1BaRAHqTpKXYo5Jwxmm2hj095IYQ6czdo8czYHzkYszcx5Np49ZeyGDfp_tmews-DTUYDzp4-EyWRHOLmZUUJXjI_0v4y_a1-S3w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2759267207</pqid></control><display><type>article</type><title>One Size Does Not Fit All: Methodological Considerations for Brain-Based Predictive Modeling in Psychiatry</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Dhamala, Elvisha ; Yeo, B.T. Thomas ; Holmes, Avram J.</creator><creatorcontrib>Dhamala, Elvisha ; Yeo, B.T. Thomas ; Holmes, Avram J.</creatorcontrib><description>Psychiatric illnesses are heterogeneous in nature. No illness manifests in the same way across individuals, and no two patients with a shared diagnosis exhibit identical symptom profiles. Over the last several decades, group-level analyses of in vivo neuroimaging data have led to fundamental advances in our understanding of the neurobiology of psychiatric illnesses. More recently, access to computational resources and large, publicly available datasets alongside the rise of predictive modeling and precision medicine approaches have facilitated the study of psychiatric illnesses at an individual level. Data-driven machine learning analyses can be applied to identify disease-relevant biological subtypes, predict individual symptom profiles, and recommend personalized therapeutic interventions. However, when developing these predictive models, methodological choices must be carefully considered to ensure accurate, robust, and interpretable results. Choices pertaining to algorithms, neuroimaging modalities and states, data transformation, phenotypes, parcellations, sample sizes, and populations we are specifically studying can influence model performance. Here, we review applications of neuroimaging-based machine learning models to study psychiatric illnesses and discuss the effects of different methodological choices on model performance. An understanding of these effects is crucial for the proper implementation of predictive models in psychiatry and will facilitate more accurate diagnoses, prognoses, and therapeutics.</description><identifier>ISSN: 0006-3223</identifier><identifier>EISSN: 1873-2402</identifier><identifier>DOI: 10.1016/j.biopsych.2022.09.024</identifier><identifier>PMID: 36577634</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Algorithms ; Biomarkers ; Brain ; Brain - diagnostic imaging ; Machine Learning ; Neuroimaging ; Neuroimaging - methods ; Precision Medicine ; Predictive modeling ; Psychiatry - methods</subject><ispartof>Biological psychiatry (1969), 2023-04, Vol.93 (8), p.717-728</ispartof><rights>2022 Society of Biological Psychiatry</rights><rights>Copyright © 2022 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c416t-9f56c61e1a1eb3c065fc2d680fde54372f28c4f40f8721bb1fb08d5f257af8a73</citedby><cites>FETCH-LOGICAL-c416t-9f56c61e1a1eb3c065fc2d680fde54372f28c4f40f8721bb1fb08d5f257af8a73</cites><orcidid>0000-0001-6583-803X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.biopsych.2022.09.024$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36577634$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dhamala, Elvisha</creatorcontrib><creatorcontrib>Yeo, B.T. Thomas</creatorcontrib><creatorcontrib>Holmes, Avram J.</creatorcontrib><title>One Size Does Not Fit All: Methodological Considerations for Brain-Based Predictive Modeling in Psychiatry</title><title>Biological psychiatry (1969)</title><addtitle>Biol Psychiatry</addtitle><description>Psychiatric illnesses are heterogeneous in nature. No illness manifests in the same way across individuals, and no two patients with a shared diagnosis exhibit identical symptom profiles. Over the last several decades, group-level analyses of in vivo neuroimaging data have led to fundamental advances in our understanding of the neurobiology of psychiatric illnesses. More recently, access to computational resources and large, publicly available datasets alongside the rise of predictive modeling and precision medicine approaches have facilitated the study of psychiatric illnesses at an individual level. Data-driven machine learning analyses can be applied to identify disease-relevant biological subtypes, predict individual symptom profiles, and recommend personalized therapeutic interventions. However, when developing these predictive models, methodological choices must be carefully considered to ensure accurate, robust, and interpretable results. Choices pertaining to algorithms, neuroimaging modalities and states, data transformation, phenotypes, parcellations, sample sizes, and populations we are specifically studying can influence model performance. Here, we review applications of neuroimaging-based machine learning models to study psychiatric illnesses and discuss the effects of different methodological choices on model performance. An understanding of these effects is crucial for the proper implementation of predictive models in psychiatry and will facilitate more accurate diagnoses, prognoses, and therapeutics.</description><subject>Algorithms</subject><subject>Biomarkers</subject><subject>Brain</subject><subject>Brain - diagnostic imaging</subject><subject>Machine Learning</subject><subject>Neuroimaging</subject><subject>Neuroimaging - methods</subject><subject>Precision Medicine</subject><subject>Predictive modeling</subject><subject>Psychiatry - methods</subject><issn>0006-3223</issn><issn>1873-2402</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkEFv1DAQhS0EokvhL1Q-ckmwJ4md5US7pYDU0krA2XLscTurbLzY3krLryerbblymhnpvXkzH2NnUtRSSPVhXQ8Ut3nvHmoQALVY1gLaF2whe91U0Ap4yRZCCFU1AM0Je5Pzeh41gHzNThrVaa2adsHWtxPyH_QH-WXEzL_Hwq-o8PNx_MhvsDxEH8d4T86OfBWnTB6TLTR3PMTEL5KlqbqwGT2_S-jJFXpEfhM9jjTdc5r43eFGsiXt37JXwY4Z3z3VU_br6vPP1dfq-vbLt9X5deVaqUq1DJ1ySqK0EofGCdUFB171Injs2kZDgN61oRWh1yCHQYZB9L4L0GkbequbU_b-uHeb4u8d5mI2lB2Oo50w7rIB3S1BaRAHqTpKXYo5Jwxmm2hj095IYQ6czdo8czYHzkYszcx5Np49ZeyGDfp_tmews-DTUYDzp4-EyWRHOLmZUUJXjI_0v4y_a1-S3w</recordid><startdate>20230415</startdate><enddate>20230415</enddate><creator>Dhamala, Elvisha</creator><creator>Yeo, B.T. Thomas</creator><creator>Holmes, Avram J.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6583-803X</orcidid></search><sort><creationdate>20230415</creationdate><title>One Size Does Not Fit All: Methodological Considerations for Brain-Based Predictive Modeling in Psychiatry</title><author>Dhamala, Elvisha ; Yeo, B.T. Thomas ; Holmes, Avram J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-9f56c61e1a1eb3c065fc2d680fde54372f28c4f40f8721bb1fb08d5f257af8a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Biomarkers</topic><topic>Brain</topic><topic>Brain - diagnostic imaging</topic><topic>Machine Learning</topic><topic>Neuroimaging</topic><topic>Neuroimaging - methods</topic><topic>Precision Medicine</topic><topic>Predictive modeling</topic><topic>Psychiatry - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dhamala, Elvisha</creatorcontrib><creatorcontrib>Yeo, B.T. Thomas</creatorcontrib><creatorcontrib>Holmes, Avram J.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biological psychiatry (1969)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dhamala, Elvisha</au><au>Yeo, B.T. Thomas</au><au>Holmes, Avram J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>One Size Does Not Fit All: Methodological Considerations for Brain-Based Predictive Modeling in Psychiatry</atitle><jtitle>Biological psychiatry (1969)</jtitle><addtitle>Biol Psychiatry</addtitle><date>2023-04-15</date><risdate>2023</risdate><volume>93</volume><issue>8</issue><spage>717</spage><epage>728</epage><pages>717-728</pages><issn>0006-3223</issn><eissn>1873-2402</eissn><abstract>Psychiatric illnesses are heterogeneous in nature. No illness manifests in the same way across individuals, and no two patients with a shared diagnosis exhibit identical symptom profiles. Over the last several decades, group-level analyses of in vivo neuroimaging data have led to fundamental advances in our understanding of the neurobiology of psychiatric illnesses. More recently, access to computational resources and large, publicly available datasets alongside the rise of predictive modeling and precision medicine approaches have facilitated the study of psychiatric illnesses at an individual level. Data-driven machine learning analyses can be applied to identify disease-relevant biological subtypes, predict individual symptom profiles, and recommend personalized therapeutic interventions. However, when developing these predictive models, methodological choices must be carefully considered to ensure accurate, robust, and interpretable results. Choices pertaining to algorithms, neuroimaging modalities and states, data transformation, phenotypes, parcellations, sample sizes, and populations we are specifically studying can influence model performance. Here, we review applications of neuroimaging-based machine learning models to study psychiatric illnesses and discuss the effects of different methodological choices on model performance. An understanding of these effects is crucial for the proper implementation of predictive models in psychiatry and will facilitate more accurate diagnoses, prognoses, and therapeutics.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>36577634</pmid><doi>10.1016/j.biopsych.2022.09.024</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-6583-803X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3223 |
ispartof | Biological psychiatry (1969), 2023-04, Vol.93 (8), p.717-728 |
issn | 0006-3223 1873-2402 |
language | eng |
recordid | cdi_proquest_miscellaneous_2759267207 |
source | MEDLINE; ScienceDirect Journals (5 years ago - present) |
subjects | Algorithms Biomarkers Brain Brain - diagnostic imaging Machine Learning Neuroimaging Neuroimaging - methods Precision Medicine Predictive modeling Psychiatry - methods |
title | One Size Does Not Fit All: Methodological Considerations for Brain-Based Predictive Modeling in Psychiatry |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T11%3A58%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=One%20Size%20Does%20Not%20Fit%20All:%20Methodological%20Considerations%20for%20Brain-Based%20Predictive%20Modeling%20in%20Psychiatry&rft.jtitle=Biological%20psychiatry%20(1969)&rft.au=Dhamala,%20Elvisha&rft.date=2023-04-15&rft.volume=93&rft.issue=8&rft.spage=717&rft.epage=728&rft.pages=717-728&rft.issn=0006-3223&rft.eissn=1873-2402&rft_id=info:doi/10.1016/j.biopsych.2022.09.024&rft_dat=%3Cproquest_cross%3E2759267207%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2759267207&rft_id=info:pmid/36577634&rft_els_id=S0006322322016328&rfr_iscdi=true |