Differentiation of benign and malignant breast lesions using diffusion-weighted imaging with a fractional-order calculus model

•FROC model can improve the distinguishing ability of benign and malignant breast lesions.•D resulted in higher diagnostic accuracy for predicting malignancy.•Combining multiple parameters is a advantage of the FROC diffusion model. To assess the feasibility of using three diffusion parameters (D, β...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of radiology 2023-02, Vol.159, p.110646-110646, Article 110646
Hauptverfasser: Wang, Chunhong, Wang, Guanying, Zhang, Yunfei, Dai, Yongming, Yang, Dan, Wang, Changfu, Li, Jianhong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 110646
container_issue
container_start_page 110646
container_title European journal of radiology
container_volume 159
creator Wang, Chunhong
Wang, Guanying
Zhang, Yunfei
Dai, Yongming
Yang, Dan
Wang, Changfu
Li, Jianhong
description •FROC model can improve the distinguishing ability of benign and malignant breast lesions.•D resulted in higher diagnostic accuracy for predicting malignancy.•Combining multiple parameters is a advantage of the FROC diffusion model. To assess the feasibility of using three diffusion parameters (D, β, and μ) derived from fractional-order calculus (FROC) diffusion model for improving the differentiation between benign and malignant breast lesions. In this prospective study, 103 patients with breast lesions were enrolled. All subjects underwent diffusion-weighted imaging (DWI) with 12b values. Inter-observer agreement with respect to quantification of parameters by two radiologists was assessed using intraclass coefficient. Conventional apparent diffusion coefficient (ADC) and three FROC model parameters D, β, and μ were compared between the benign lesion and malignant lesion groups using the Mann-Whitney U test. Then, a comprehensive prediction model was created by using binary logistic regression. Receiver operating characteristic (ROC) curve analysis was performed to evaluate the diagnostic performance of the parameters using histopathological diagnosis as the reference standard. The FROC parameters and ADC all exhibited significant differences between benign lesions and malignant lesions (P<0.001). Among the individual parameters, the sensitivity of μ was higher than ADC (95.92% for μ vs 91.84% for ADC), and the specificity of β was higher than ADC (72.22% for β vs 70.37% for ADC). The combination of ADC and FROC parameters (D and β) generated the largest area under the ROC curve (0.841) when compared with individual parameters, indicating an improved performance for differentiating benign lesions from malignant lesions. This study demonstrated the feasibility of using the FROC diffusion model to improve the accuracy of identifying malignant breast lesions.
doi_str_mv 10.1016/j.ejrad.2022.110646
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2759266643</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0720048X2200496X</els_id><sourcerecordid>2759266643</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-f06f1a0e8a7496ab76880791b31fedd2420c4287ba6ee5ec9655b841c7cfae933</originalsourceid><addsrcrecordid>eNp9kE1v1DAQhi1ERZfCL0BCPnLJYjuOnRw4oPIpVeLSStysiT3eeuU4xXaouPDbm7CFI6exxs87o3kIecXZnjOu3h73eMzg9oIJseecKamekB3vtWi0Fvop2TEtWMNk__2cPC_lyBjr5CCekfNWdVrzXu7I7w_Be8yYaoAa5kRnT0dM4ZAoJEcniOsTUqVjRiiVRiwrVehSQjpQt4aXrdHcYzjcVnQ0THDYvu5DvaVAfQa7zYXYzNlhphaiXeJS6DQ7jC_ImYdY8OVjvSA3nz5eX35prr59_nr5_qqxbTfUxjPlOTDsQctBwahV3zM98LHlHp0TUjArRa9HUIgd2kF13dhLbrX1gEPbXpA3p7l3ef6xYKlmCsVijJBwXooRuhuEUkpuaHtCbZ5LyejNXV6Pyr8MZ2YTb47mj3iziTcn8Wvq9eOCZZzQ_cv8Nb0C704Armf-DJhNsQGTRRcy2mrcHP674AGhPJf3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2759266643</pqid></control><display><type>article</type><title>Differentiation of benign and malignant breast lesions using diffusion-weighted imaging with a fractional-order calculus model</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Wang, Chunhong ; Wang, Guanying ; Zhang, Yunfei ; Dai, Yongming ; Yang, Dan ; Wang, Changfu ; Li, Jianhong</creator><creatorcontrib>Wang, Chunhong ; Wang, Guanying ; Zhang, Yunfei ; Dai, Yongming ; Yang, Dan ; Wang, Changfu ; Li, Jianhong</creatorcontrib><description>•FROC model can improve the distinguishing ability of benign and malignant breast lesions.•D resulted in higher diagnostic accuracy for predicting malignancy.•Combining multiple parameters is a advantage of the FROC diffusion model. To assess the feasibility of using three diffusion parameters (D, β, and μ) derived from fractional-order calculus (FROC) diffusion model for improving the differentiation between benign and malignant breast lesions. In this prospective study, 103 patients with breast lesions were enrolled. All subjects underwent diffusion-weighted imaging (DWI) with 12b values. Inter-observer agreement with respect to quantification of parameters by two radiologists was assessed using intraclass coefficient. Conventional apparent diffusion coefficient (ADC) and three FROC model parameters D, β, and μ were compared between the benign lesion and malignant lesion groups using the Mann-Whitney U test. Then, a comprehensive prediction model was created by using binary logistic regression. Receiver operating characteristic (ROC) curve analysis was performed to evaluate the diagnostic performance of the parameters using histopathological diagnosis as the reference standard. The FROC parameters and ADC all exhibited significant differences between benign lesions and malignant lesions (P<0.001). Among the individual parameters, the sensitivity of μ was higher than ADC (95.92% for μ vs 91.84% for ADC), and the specificity of β was higher than ADC (72.22% for β vs 70.37% for ADC). The combination of ADC and FROC parameters (D and β) generated the largest area under the ROC curve (0.841) when compared with individual parameters, indicating an improved performance for differentiating benign lesions from malignant lesions. This study demonstrated the feasibility of using the FROC diffusion model to improve the accuracy of identifying malignant breast lesions.</description><identifier>ISSN: 0720-048X</identifier><identifier>EISSN: 1872-7727</identifier><identifier>DOI: 10.1016/j.ejrad.2022.110646</identifier><identifier>PMID: 36577184</identifier><language>eng</language><publisher>Ireland: Elsevier B.V</publisher><subject>Breast - diagnostic imaging ; Breast Neoplasms - diagnostic imaging ; Breast neoplasms. Diffusion magnetic resonance imaging. Early detection of cancer ; Diagnosis, Differential ; Diffusion Magnetic Resonance Imaging - methods ; Female ; Humans ; Image Interpretation, Computer-Assisted - methods ; Prospective Studies ; ROC Curve ; Sensitivity and Specificity</subject><ispartof>European journal of radiology, 2023-02, Vol.159, p.110646-110646, Article 110646</ispartof><rights>2022 Elsevier B.V.</rights><rights>Copyright © 2022 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-f06f1a0e8a7496ab76880791b31fedd2420c4287ba6ee5ec9655b841c7cfae933</citedby><cites>FETCH-LOGICAL-c359t-f06f1a0e8a7496ab76880791b31fedd2420c4287ba6ee5ec9655b841c7cfae933</cites><orcidid>0000-0002-8297-3687</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ejrad.2022.110646$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36577184$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Chunhong</creatorcontrib><creatorcontrib>Wang, Guanying</creatorcontrib><creatorcontrib>Zhang, Yunfei</creatorcontrib><creatorcontrib>Dai, Yongming</creatorcontrib><creatorcontrib>Yang, Dan</creatorcontrib><creatorcontrib>Wang, Changfu</creatorcontrib><creatorcontrib>Li, Jianhong</creatorcontrib><title>Differentiation of benign and malignant breast lesions using diffusion-weighted imaging with a fractional-order calculus model</title><title>European journal of radiology</title><addtitle>Eur J Radiol</addtitle><description>•FROC model can improve the distinguishing ability of benign and malignant breast lesions.•D resulted in higher diagnostic accuracy for predicting malignancy.•Combining multiple parameters is a advantage of the FROC diffusion model. To assess the feasibility of using three diffusion parameters (D, β, and μ) derived from fractional-order calculus (FROC) diffusion model for improving the differentiation between benign and malignant breast lesions. In this prospective study, 103 patients with breast lesions were enrolled. All subjects underwent diffusion-weighted imaging (DWI) with 12b values. Inter-observer agreement with respect to quantification of parameters by two radiologists was assessed using intraclass coefficient. Conventional apparent diffusion coefficient (ADC) and three FROC model parameters D, β, and μ were compared between the benign lesion and malignant lesion groups using the Mann-Whitney U test. Then, a comprehensive prediction model was created by using binary logistic regression. Receiver operating characteristic (ROC) curve analysis was performed to evaluate the diagnostic performance of the parameters using histopathological diagnosis as the reference standard. The FROC parameters and ADC all exhibited significant differences between benign lesions and malignant lesions (P<0.001). Among the individual parameters, the sensitivity of μ was higher than ADC (95.92% for μ vs 91.84% for ADC), and the specificity of β was higher than ADC (72.22% for β vs 70.37% for ADC). The combination of ADC and FROC parameters (D and β) generated the largest area under the ROC curve (0.841) when compared with individual parameters, indicating an improved performance for differentiating benign lesions from malignant lesions. This study demonstrated the feasibility of using the FROC diffusion model to improve the accuracy of identifying malignant breast lesions.</description><subject>Breast - diagnostic imaging</subject><subject>Breast Neoplasms - diagnostic imaging</subject><subject>Breast neoplasms. Diffusion magnetic resonance imaging. Early detection of cancer</subject><subject>Diagnosis, Differential</subject><subject>Diffusion Magnetic Resonance Imaging - methods</subject><subject>Female</subject><subject>Humans</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Prospective Studies</subject><subject>ROC Curve</subject><subject>Sensitivity and Specificity</subject><issn>0720-048X</issn><issn>1872-7727</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1v1DAQhi1ERZfCL0BCPnLJYjuOnRw4oPIpVeLSStysiT3eeuU4xXaouPDbm7CFI6exxs87o3kIecXZnjOu3h73eMzg9oIJseecKamekB3vtWi0Fvop2TEtWMNk__2cPC_lyBjr5CCekfNWdVrzXu7I7w_Be8yYaoAa5kRnT0dM4ZAoJEcniOsTUqVjRiiVRiwrVehSQjpQt4aXrdHcYzjcVnQ0THDYvu5DvaVAfQa7zYXYzNlhphaiXeJS6DQ7jC_ImYdY8OVjvSA3nz5eX35prr59_nr5_qqxbTfUxjPlOTDsQctBwahV3zM98LHlHp0TUjArRa9HUIgd2kF13dhLbrX1gEPbXpA3p7l3ef6xYKlmCsVijJBwXooRuhuEUkpuaHtCbZ5LyejNXV6Pyr8MZ2YTb47mj3iziTcn8Wvq9eOCZZzQ_cv8Nb0C704Armf-DJhNsQGTRRcy2mrcHP674AGhPJf3</recordid><startdate>202302</startdate><enddate>202302</enddate><creator>Wang, Chunhong</creator><creator>Wang, Guanying</creator><creator>Zhang, Yunfei</creator><creator>Dai, Yongming</creator><creator>Yang, Dan</creator><creator>Wang, Changfu</creator><creator>Li, Jianhong</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8297-3687</orcidid></search><sort><creationdate>202302</creationdate><title>Differentiation of benign and malignant breast lesions using diffusion-weighted imaging with a fractional-order calculus model</title><author>Wang, Chunhong ; Wang, Guanying ; Zhang, Yunfei ; Dai, Yongming ; Yang, Dan ; Wang, Changfu ; Li, Jianhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-f06f1a0e8a7496ab76880791b31fedd2420c4287ba6ee5ec9655b841c7cfae933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Breast - diagnostic imaging</topic><topic>Breast Neoplasms - diagnostic imaging</topic><topic>Breast neoplasms. Diffusion magnetic resonance imaging. Early detection of cancer</topic><topic>Diagnosis, Differential</topic><topic>Diffusion Magnetic Resonance Imaging - methods</topic><topic>Female</topic><topic>Humans</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Prospective Studies</topic><topic>ROC Curve</topic><topic>Sensitivity and Specificity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Chunhong</creatorcontrib><creatorcontrib>Wang, Guanying</creatorcontrib><creatorcontrib>Zhang, Yunfei</creatorcontrib><creatorcontrib>Dai, Yongming</creatorcontrib><creatorcontrib>Yang, Dan</creatorcontrib><creatorcontrib>Wang, Changfu</creatorcontrib><creatorcontrib>Li, Jianhong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>European journal of radiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Chunhong</au><au>Wang, Guanying</au><au>Zhang, Yunfei</au><au>Dai, Yongming</au><au>Yang, Dan</au><au>Wang, Changfu</au><au>Li, Jianhong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Differentiation of benign and malignant breast lesions using diffusion-weighted imaging with a fractional-order calculus model</atitle><jtitle>European journal of radiology</jtitle><addtitle>Eur J Radiol</addtitle><date>2023-02</date><risdate>2023</risdate><volume>159</volume><spage>110646</spage><epage>110646</epage><pages>110646-110646</pages><artnum>110646</artnum><issn>0720-048X</issn><eissn>1872-7727</eissn><abstract>•FROC model can improve the distinguishing ability of benign and malignant breast lesions.•D resulted in higher diagnostic accuracy for predicting malignancy.•Combining multiple parameters is a advantage of the FROC diffusion model. To assess the feasibility of using three diffusion parameters (D, β, and μ) derived from fractional-order calculus (FROC) diffusion model for improving the differentiation between benign and malignant breast lesions. In this prospective study, 103 patients with breast lesions were enrolled. All subjects underwent diffusion-weighted imaging (DWI) with 12b values. Inter-observer agreement with respect to quantification of parameters by two radiologists was assessed using intraclass coefficient. Conventional apparent diffusion coefficient (ADC) and three FROC model parameters D, β, and μ were compared between the benign lesion and malignant lesion groups using the Mann-Whitney U test. Then, a comprehensive prediction model was created by using binary logistic regression. Receiver operating characteristic (ROC) curve analysis was performed to evaluate the diagnostic performance of the parameters using histopathological diagnosis as the reference standard. The FROC parameters and ADC all exhibited significant differences between benign lesions and malignant lesions (P<0.001). Among the individual parameters, the sensitivity of μ was higher than ADC (95.92% for μ vs 91.84% for ADC), and the specificity of β was higher than ADC (72.22% for β vs 70.37% for ADC). The combination of ADC and FROC parameters (D and β) generated the largest area under the ROC curve (0.841) when compared with individual parameters, indicating an improved performance for differentiating benign lesions from malignant lesions. This study demonstrated the feasibility of using the FROC diffusion model to improve the accuracy of identifying malignant breast lesions.</abstract><cop>Ireland</cop><pub>Elsevier B.V</pub><pmid>36577184</pmid><doi>10.1016/j.ejrad.2022.110646</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-8297-3687</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0720-048X
ispartof European journal of radiology, 2023-02, Vol.159, p.110646-110646, Article 110646
issn 0720-048X
1872-7727
language eng
recordid cdi_proquest_miscellaneous_2759266643
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Breast - diagnostic imaging
Breast Neoplasms - diagnostic imaging
Breast neoplasms. Diffusion magnetic resonance imaging. Early detection of cancer
Diagnosis, Differential
Diffusion Magnetic Resonance Imaging - methods
Female
Humans
Image Interpretation, Computer-Assisted - methods
Prospective Studies
ROC Curve
Sensitivity and Specificity
title Differentiation of benign and malignant breast lesions using diffusion-weighted imaging with a fractional-order calculus model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T11%3A08%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Differentiation%20of%20benign%20and%20malignant%20breast%20lesions%20using%20diffusion-weighted%20imaging%20with%20a%20fractional-order%20calculus%20model&rft.jtitle=European%20journal%20of%20radiology&rft.au=Wang,%20Chunhong&rft.date=2023-02&rft.volume=159&rft.spage=110646&rft.epage=110646&rft.pages=110646-110646&rft.artnum=110646&rft.issn=0720-048X&rft.eissn=1872-7727&rft_id=info:doi/10.1016/j.ejrad.2022.110646&rft_dat=%3Cproquest_cross%3E2759266643%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2759266643&rft_id=info:pmid/36577184&rft_els_id=S0720048X2200496X&rfr_iscdi=true