Porous Flow Field for Next-Generation Proton Exchange Membrane Fuel Cells: Materials, Characterization, Design, and Challenges
Porous flow fields distribute fuel and oxygen for the electrochemical reactions of proton exchange membrane (PEM) fuel cells through their pore network instead of conventional flow channels. This type of flow fields has showed great promises in enhancing reactant supply, heat removal, and electrical...
Gespeichert in:
Veröffentlicht in: | Chemical reviews 2023-02, Vol.123 (3), p.989-1039 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1039 |
---|---|
container_issue | 3 |
container_start_page | 989 |
container_title | Chemical reviews |
container_volume | 123 |
creator | Zhang, Guobin Qu, Zhiguo Tao, Wen-Quan Wang, Xueliang Wu, Lizhen Wu, Siyuan Xie, Xu Tongsh, Chasen Huo, Wenming Bao, Zhiming Jiao, Kui Wang, Yun |
description | Porous flow fields distribute fuel and oxygen for the electrochemical reactions of proton exchange membrane (PEM) fuel cells through their pore network instead of conventional flow channels. This type of flow fields has showed great promises in enhancing reactant supply, heat removal, and electrical conduction, reducing the concentration performance loss and improving operational stability for fuel cells. This review presents the research and development progress of porous flow fields with insights for next-generation PEM fuel cells of high power density (e.g., ∼9.0 kW L–1). Materials, fabrication methods, fundamentals, and fuel cell performance associated with porous flow fields are discussed in depth. Major challenges are described and explained, along with several future directions, including separated gas/liquid flow configurations, integrated porous structure, full morphology modeling, data-driven methods, and artificial intelligence-assisted design/optimization. |
doi_str_mv | 10.1021/acs.chemrev.2c00539 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2759264290</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2774582511</sourcerecordid><originalsourceid>FETCH-LOGICAL-a373t-2ea247d4454c22c988d4198464d94e19286a3e0e455d6148f0a9c2e9e07b2f263</originalsourceid><addsrcrecordid>eNp9kU9P3DAQxa2qqGyBT1CpstRLD5tde2I7cW9o2QUk_h3gHHmdyW5QElM7KbSHfna87MKBA6enkX_veUaPkG-cTTgDPjU2TOwaW49_JmAZk6n-REZcAktUrtlnMmKM6QSUkvvkawj3cZQSsi9kP1UyZ6nUI_L_xnk3BLpo3CNd1NiUtHKeXuFTn5xih970tevojXd9lPmTXZtuhfQS26U3HdLFgA2dYdOEX_TS9Ohr04Qxna2NN3Yz_nsJGNMTDPUqqunKzWvTYMwJh2SvigY82ukBuVvMb2dnycX16fns-CIxaZb2CaABkZVCSGEBrM7zUnCdCyVKLZBryJVJkaGQslRc5BUz2gJqZNkSKlDpAfm5zX3w7veAoS_aOti4drwhnl9AJjUoAZpF9Mc79N4NvovbRSoTMgfJeaTSLWW9C8FjVTz4ujX-b8FZsamniPUUu3qKXT3R9X2XPSxbLN88r31EYLoFNu63fz-KfAbXDJ1h</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2774582511</pqid></control><display><type>article</type><title>Porous Flow Field for Next-Generation Proton Exchange Membrane Fuel Cells: Materials, Characterization, Design, and Challenges</title><source>ACS Publications</source><creator>Zhang, Guobin ; Qu, Zhiguo ; Tao, Wen-Quan ; Wang, Xueliang ; Wu, Lizhen ; Wu, Siyuan ; Xie, Xu ; Tongsh, Chasen ; Huo, Wenming ; Bao, Zhiming ; Jiao, Kui ; Wang, Yun</creator><creatorcontrib>Zhang, Guobin ; Qu, Zhiguo ; Tao, Wen-Quan ; Wang, Xueliang ; Wu, Lizhen ; Wu, Siyuan ; Xie, Xu ; Tongsh, Chasen ; Huo, Wenming ; Bao, Zhiming ; Jiao, Kui ; Wang, Yun</creatorcontrib><description>Porous flow fields distribute fuel and oxygen for the electrochemical reactions of proton exchange membrane (PEM) fuel cells through their pore network instead of conventional flow channels. This type of flow fields has showed great promises in enhancing reactant supply, heat removal, and electrical conduction, reducing the concentration performance loss and improving operational stability for fuel cells. This review presents the research and development progress of porous flow fields with insights for next-generation PEM fuel cells of high power density (e.g., ∼9.0 kW L–1). Materials, fabrication methods, fundamentals, and fuel cell performance associated with porous flow fields are discussed in depth. Major challenges are described and explained, along with several future directions, including separated gas/liquid flow configurations, integrated porous structure, full morphology modeling, data-driven methods, and artificial intelligence-assisted design/optimization.</description><identifier>ISSN: 0009-2665</identifier><identifier>EISSN: 1520-6890</identifier><identifier>DOI: 10.1021/acs.chemrev.2c00539</identifier><identifier>PMID: 36580359</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Artificial intelligence ; Chemical reactions ; Conduction heating ; Design optimization ; Electrical conduction ; Electrochemistry ; Fabrication ; Flow channels ; Fuel cells ; Fuel technology ; Liquid flow ; Proton exchange membrane fuel cells ; Protons ; R&D ; Research & development</subject><ispartof>Chemical reviews, 2023-02, Vol.123 (3), p.989-1039</ispartof><rights>2022 American Chemical Society</rights><rights>Copyright American Chemical Society Feb 8, 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a373t-2ea247d4454c22c988d4198464d94e19286a3e0e455d6148f0a9c2e9e07b2f263</citedby><cites>FETCH-LOGICAL-a373t-2ea247d4454c22c988d4198464d94e19286a3e0e455d6148f0a9c2e9e07b2f263</cites><orcidid>0000-0002-4922-4967 ; 0000-0002-1296-1330 ; 0000-0003-2035-3148 ; 0000-0002-2348-6299 ; 0000-0003-1469-6152</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.chemrev.2c00539$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.chemrev.2c00539$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,781,785,2766,27081,27929,27930,56743,56793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36580359$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Guobin</creatorcontrib><creatorcontrib>Qu, Zhiguo</creatorcontrib><creatorcontrib>Tao, Wen-Quan</creatorcontrib><creatorcontrib>Wang, Xueliang</creatorcontrib><creatorcontrib>Wu, Lizhen</creatorcontrib><creatorcontrib>Wu, Siyuan</creatorcontrib><creatorcontrib>Xie, Xu</creatorcontrib><creatorcontrib>Tongsh, Chasen</creatorcontrib><creatorcontrib>Huo, Wenming</creatorcontrib><creatorcontrib>Bao, Zhiming</creatorcontrib><creatorcontrib>Jiao, Kui</creatorcontrib><creatorcontrib>Wang, Yun</creatorcontrib><title>Porous Flow Field for Next-Generation Proton Exchange Membrane Fuel Cells: Materials, Characterization, Design, and Challenges</title><title>Chemical reviews</title><addtitle>Chem. Rev</addtitle><description>Porous flow fields distribute fuel and oxygen for the electrochemical reactions of proton exchange membrane (PEM) fuel cells through their pore network instead of conventional flow channels. This type of flow fields has showed great promises in enhancing reactant supply, heat removal, and electrical conduction, reducing the concentration performance loss and improving operational stability for fuel cells. This review presents the research and development progress of porous flow fields with insights for next-generation PEM fuel cells of high power density (e.g., ∼9.0 kW L–1). Materials, fabrication methods, fundamentals, and fuel cell performance associated with porous flow fields are discussed in depth. Major challenges are described and explained, along with several future directions, including separated gas/liquid flow configurations, integrated porous structure, full morphology modeling, data-driven methods, and artificial intelligence-assisted design/optimization.</description><subject>Artificial intelligence</subject><subject>Chemical reactions</subject><subject>Conduction heating</subject><subject>Design optimization</subject><subject>Electrical conduction</subject><subject>Electrochemistry</subject><subject>Fabrication</subject><subject>Flow channels</subject><subject>Fuel cells</subject><subject>Fuel technology</subject><subject>Liquid flow</subject><subject>Proton exchange membrane fuel cells</subject><subject>Protons</subject><subject>R&D</subject><subject>Research & development</subject><issn>0009-2665</issn><issn>1520-6890</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kU9P3DAQxa2qqGyBT1CpstRLD5tde2I7cW9o2QUk_h3gHHmdyW5QElM7KbSHfna87MKBA6enkX_veUaPkG-cTTgDPjU2TOwaW49_JmAZk6n-REZcAktUrtlnMmKM6QSUkvvkawj3cZQSsi9kP1UyZ6nUI_L_xnk3BLpo3CNd1NiUtHKeXuFTn5xih970tevojXd9lPmTXZtuhfQS26U3HdLFgA2dYdOEX_TS9Ohr04Qxna2NN3Yz_nsJGNMTDPUqqunKzWvTYMwJh2SvigY82ukBuVvMb2dnycX16fns-CIxaZb2CaABkZVCSGEBrM7zUnCdCyVKLZBryJVJkaGQslRc5BUz2gJqZNkSKlDpAfm5zX3w7veAoS_aOti4drwhnl9AJjUoAZpF9Mc79N4NvovbRSoTMgfJeaTSLWW9C8FjVTz4ujX-b8FZsamniPUUu3qKXT3R9X2XPSxbLN88r31EYLoFNu63fz-KfAbXDJ1h</recordid><startdate>20230208</startdate><enddate>20230208</enddate><creator>Zhang, Guobin</creator><creator>Qu, Zhiguo</creator><creator>Tao, Wen-Quan</creator><creator>Wang, Xueliang</creator><creator>Wu, Lizhen</creator><creator>Wu, Siyuan</creator><creator>Xie, Xu</creator><creator>Tongsh, Chasen</creator><creator>Huo, Wenming</creator><creator>Bao, Zhiming</creator><creator>Jiao, Kui</creator><creator>Wang, Yun</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4922-4967</orcidid><orcidid>https://orcid.org/0000-0002-1296-1330</orcidid><orcidid>https://orcid.org/0000-0003-2035-3148</orcidid><orcidid>https://orcid.org/0000-0002-2348-6299</orcidid><orcidid>https://orcid.org/0000-0003-1469-6152</orcidid></search><sort><creationdate>20230208</creationdate><title>Porous Flow Field for Next-Generation Proton Exchange Membrane Fuel Cells: Materials, Characterization, Design, and Challenges</title><author>Zhang, Guobin ; Qu, Zhiguo ; Tao, Wen-Quan ; Wang, Xueliang ; Wu, Lizhen ; Wu, Siyuan ; Xie, Xu ; Tongsh, Chasen ; Huo, Wenming ; Bao, Zhiming ; Jiao, Kui ; Wang, Yun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a373t-2ea247d4454c22c988d4198464d94e19286a3e0e455d6148f0a9c2e9e07b2f263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial intelligence</topic><topic>Chemical reactions</topic><topic>Conduction heating</topic><topic>Design optimization</topic><topic>Electrical conduction</topic><topic>Electrochemistry</topic><topic>Fabrication</topic><topic>Flow channels</topic><topic>Fuel cells</topic><topic>Fuel technology</topic><topic>Liquid flow</topic><topic>Proton exchange membrane fuel cells</topic><topic>Protons</topic><topic>R&D</topic><topic>Research & development</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Guobin</creatorcontrib><creatorcontrib>Qu, Zhiguo</creatorcontrib><creatorcontrib>Tao, Wen-Quan</creatorcontrib><creatorcontrib>Wang, Xueliang</creatorcontrib><creatorcontrib>Wu, Lizhen</creatorcontrib><creatorcontrib>Wu, Siyuan</creatorcontrib><creatorcontrib>Xie, Xu</creatorcontrib><creatorcontrib>Tongsh, Chasen</creatorcontrib><creatorcontrib>Huo, Wenming</creatorcontrib><creatorcontrib>Bao, Zhiming</creatorcontrib><creatorcontrib>Jiao, Kui</creatorcontrib><creatorcontrib>Wang, Yun</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Chemical reviews</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Guobin</au><au>Qu, Zhiguo</au><au>Tao, Wen-Quan</au><au>Wang, Xueliang</au><au>Wu, Lizhen</au><au>Wu, Siyuan</au><au>Xie, Xu</au><au>Tongsh, Chasen</au><au>Huo, Wenming</au><au>Bao, Zhiming</au><au>Jiao, Kui</au><au>Wang, Yun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Porous Flow Field for Next-Generation Proton Exchange Membrane Fuel Cells: Materials, Characterization, Design, and Challenges</atitle><jtitle>Chemical reviews</jtitle><addtitle>Chem. Rev</addtitle><date>2023-02-08</date><risdate>2023</risdate><volume>123</volume><issue>3</issue><spage>989</spage><epage>1039</epage><pages>989-1039</pages><issn>0009-2665</issn><eissn>1520-6890</eissn><abstract>Porous flow fields distribute fuel and oxygen for the electrochemical reactions of proton exchange membrane (PEM) fuel cells through their pore network instead of conventional flow channels. This type of flow fields has showed great promises in enhancing reactant supply, heat removal, and electrical conduction, reducing the concentration performance loss and improving operational stability for fuel cells. This review presents the research and development progress of porous flow fields with insights for next-generation PEM fuel cells of high power density (e.g., ∼9.0 kW L–1). Materials, fabrication methods, fundamentals, and fuel cell performance associated with porous flow fields are discussed in depth. Major challenges are described and explained, along with several future directions, including separated gas/liquid flow configurations, integrated porous structure, full morphology modeling, data-driven methods, and artificial intelligence-assisted design/optimization.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>36580359</pmid><doi>10.1021/acs.chemrev.2c00539</doi><tpages>51</tpages><orcidid>https://orcid.org/0000-0002-4922-4967</orcidid><orcidid>https://orcid.org/0000-0002-1296-1330</orcidid><orcidid>https://orcid.org/0000-0003-2035-3148</orcidid><orcidid>https://orcid.org/0000-0002-2348-6299</orcidid><orcidid>https://orcid.org/0000-0003-1469-6152</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0009-2665 |
ispartof | Chemical reviews, 2023-02, Vol.123 (3), p.989-1039 |
issn | 0009-2665 1520-6890 |
language | eng |
recordid | cdi_proquest_miscellaneous_2759264290 |
source | ACS Publications |
subjects | Artificial intelligence Chemical reactions Conduction heating Design optimization Electrical conduction Electrochemistry Fabrication Flow channels Fuel cells Fuel technology Liquid flow Proton exchange membrane fuel cells Protons R&D Research & development |
title | Porous Flow Field for Next-Generation Proton Exchange Membrane Fuel Cells: Materials, Characterization, Design, and Challenges |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T23%3A52%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Porous%20Flow%20Field%20for%20Next-Generation%20Proton%20Exchange%20Membrane%20Fuel%20Cells:%20Materials,%20Characterization,%20Design,%20and%20Challenges&rft.jtitle=Chemical%20reviews&rft.au=Zhang,%20Guobin&rft.date=2023-02-08&rft.volume=123&rft.issue=3&rft.spage=989&rft.epage=1039&rft.pages=989-1039&rft.issn=0009-2665&rft.eissn=1520-6890&rft_id=info:doi/10.1021/acs.chemrev.2c00539&rft_dat=%3Cproquest_cross%3E2774582511%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2774582511&rft_id=info:pmid/36580359&rfr_iscdi=true |