Porous Flow Field for Next-Generation Proton Exchange Membrane Fuel Cells: Materials, Characterization, Design, and Challenges

Porous flow fields distribute fuel and oxygen for the electrochemical reactions of proton exchange membrane (PEM) fuel cells through their pore network instead of conventional flow channels. This type of flow fields has showed great promises in enhancing reactant supply, heat removal, and electrical...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical reviews 2023-02, Vol.123 (3), p.989-1039
Hauptverfasser: Zhang, Guobin, Qu, Zhiguo, Tao, Wen-Quan, Wang, Xueliang, Wu, Lizhen, Wu, Siyuan, Xie, Xu, Tongsh, Chasen, Huo, Wenming, Bao, Zhiming, Jiao, Kui, Wang, Yun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1039
container_issue 3
container_start_page 989
container_title Chemical reviews
container_volume 123
creator Zhang, Guobin
Qu, Zhiguo
Tao, Wen-Quan
Wang, Xueliang
Wu, Lizhen
Wu, Siyuan
Xie, Xu
Tongsh, Chasen
Huo, Wenming
Bao, Zhiming
Jiao, Kui
Wang, Yun
description Porous flow fields distribute fuel and oxygen for the electrochemical reactions of proton exchange membrane (PEM) fuel cells through their pore network instead of conventional flow channels. This type of flow fields has showed great promises in enhancing reactant supply, heat removal, and electrical conduction, reducing the concentration performance loss and improving operational stability for fuel cells. This review presents the research and development progress of porous flow fields with insights for next-generation PEM fuel cells of high power density (e.g., ∼9.0 kW L–1). Materials, fabrication methods, fundamentals, and fuel cell performance associated with porous flow fields are discussed in depth. Major challenges are described and explained, along with several future directions, including separated gas/liquid flow configurations, integrated porous structure, full morphology modeling, data-driven methods, and artificial intelligence-assisted design/optimization.
doi_str_mv 10.1021/acs.chemrev.2c00539
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2759264290</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2774582511</sourcerecordid><originalsourceid>FETCH-LOGICAL-a373t-2ea247d4454c22c988d4198464d94e19286a3e0e455d6148f0a9c2e9e07b2f263</originalsourceid><addsrcrecordid>eNp9kU9P3DAQxa2qqGyBT1CpstRLD5tde2I7cW9o2QUk_h3gHHmdyW5QElM7KbSHfna87MKBA6enkX_veUaPkG-cTTgDPjU2TOwaW49_JmAZk6n-REZcAktUrtlnMmKM6QSUkvvkawj3cZQSsi9kP1UyZ6nUI_L_xnk3BLpo3CNd1NiUtHKeXuFTn5xih970tevojXd9lPmTXZtuhfQS26U3HdLFgA2dYdOEX_TS9Ohr04Qxna2NN3Yz_nsJGNMTDPUqqunKzWvTYMwJh2SvigY82ukBuVvMb2dnycX16fns-CIxaZb2CaABkZVCSGEBrM7zUnCdCyVKLZBryJVJkaGQslRc5BUz2gJqZNkSKlDpAfm5zX3w7veAoS_aOti4drwhnl9AJjUoAZpF9Mc79N4NvovbRSoTMgfJeaTSLWW9C8FjVTz4ujX-b8FZsamniPUUu3qKXT3R9X2XPSxbLN88r31EYLoFNu63fz-KfAbXDJ1h</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2774582511</pqid></control><display><type>article</type><title>Porous Flow Field for Next-Generation Proton Exchange Membrane Fuel Cells: Materials, Characterization, Design, and Challenges</title><source>ACS Publications</source><creator>Zhang, Guobin ; Qu, Zhiguo ; Tao, Wen-Quan ; Wang, Xueliang ; Wu, Lizhen ; Wu, Siyuan ; Xie, Xu ; Tongsh, Chasen ; Huo, Wenming ; Bao, Zhiming ; Jiao, Kui ; Wang, Yun</creator><creatorcontrib>Zhang, Guobin ; Qu, Zhiguo ; Tao, Wen-Quan ; Wang, Xueliang ; Wu, Lizhen ; Wu, Siyuan ; Xie, Xu ; Tongsh, Chasen ; Huo, Wenming ; Bao, Zhiming ; Jiao, Kui ; Wang, Yun</creatorcontrib><description>Porous flow fields distribute fuel and oxygen for the electrochemical reactions of proton exchange membrane (PEM) fuel cells through their pore network instead of conventional flow channels. This type of flow fields has showed great promises in enhancing reactant supply, heat removal, and electrical conduction, reducing the concentration performance loss and improving operational stability for fuel cells. This review presents the research and development progress of porous flow fields with insights for next-generation PEM fuel cells of high power density (e.g., ∼9.0 kW L–1). Materials, fabrication methods, fundamentals, and fuel cell performance associated with porous flow fields are discussed in depth. Major challenges are described and explained, along with several future directions, including separated gas/liquid flow configurations, integrated porous structure, full morphology modeling, data-driven methods, and artificial intelligence-assisted design/optimization.</description><identifier>ISSN: 0009-2665</identifier><identifier>EISSN: 1520-6890</identifier><identifier>DOI: 10.1021/acs.chemrev.2c00539</identifier><identifier>PMID: 36580359</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Artificial intelligence ; Chemical reactions ; Conduction heating ; Design optimization ; Electrical conduction ; Electrochemistry ; Fabrication ; Flow channels ; Fuel cells ; Fuel technology ; Liquid flow ; Proton exchange membrane fuel cells ; Protons ; R&amp;D ; Research &amp; development</subject><ispartof>Chemical reviews, 2023-02, Vol.123 (3), p.989-1039</ispartof><rights>2022 American Chemical Society</rights><rights>Copyright American Chemical Society Feb 8, 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a373t-2ea247d4454c22c988d4198464d94e19286a3e0e455d6148f0a9c2e9e07b2f263</citedby><cites>FETCH-LOGICAL-a373t-2ea247d4454c22c988d4198464d94e19286a3e0e455d6148f0a9c2e9e07b2f263</cites><orcidid>0000-0002-4922-4967 ; 0000-0002-1296-1330 ; 0000-0003-2035-3148 ; 0000-0002-2348-6299 ; 0000-0003-1469-6152</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.chemrev.2c00539$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.chemrev.2c00539$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,781,785,2766,27081,27929,27930,56743,56793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36580359$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Guobin</creatorcontrib><creatorcontrib>Qu, Zhiguo</creatorcontrib><creatorcontrib>Tao, Wen-Quan</creatorcontrib><creatorcontrib>Wang, Xueliang</creatorcontrib><creatorcontrib>Wu, Lizhen</creatorcontrib><creatorcontrib>Wu, Siyuan</creatorcontrib><creatorcontrib>Xie, Xu</creatorcontrib><creatorcontrib>Tongsh, Chasen</creatorcontrib><creatorcontrib>Huo, Wenming</creatorcontrib><creatorcontrib>Bao, Zhiming</creatorcontrib><creatorcontrib>Jiao, Kui</creatorcontrib><creatorcontrib>Wang, Yun</creatorcontrib><title>Porous Flow Field for Next-Generation Proton Exchange Membrane Fuel Cells: Materials, Characterization, Design, and Challenges</title><title>Chemical reviews</title><addtitle>Chem. Rev</addtitle><description>Porous flow fields distribute fuel and oxygen for the electrochemical reactions of proton exchange membrane (PEM) fuel cells through their pore network instead of conventional flow channels. This type of flow fields has showed great promises in enhancing reactant supply, heat removal, and electrical conduction, reducing the concentration performance loss and improving operational stability for fuel cells. This review presents the research and development progress of porous flow fields with insights for next-generation PEM fuel cells of high power density (e.g., ∼9.0 kW L–1). Materials, fabrication methods, fundamentals, and fuel cell performance associated with porous flow fields are discussed in depth. Major challenges are described and explained, along with several future directions, including separated gas/liquid flow configurations, integrated porous structure, full morphology modeling, data-driven methods, and artificial intelligence-assisted design/optimization.</description><subject>Artificial intelligence</subject><subject>Chemical reactions</subject><subject>Conduction heating</subject><subject>Design optimization</subject><subject>Electrical conduction</subject><subject>Electrochemistry</subject><subject>Fabrication</subject><subject>Flow channels</subject><subject>Fuel cells</subject><subject>Fuel technology</subject><subject>Liquid flow</subject><subject>Proton exchange membrane fuel cells</subject><subject>Protons</subject><subject>R&amp;D</subject><subject>Research &amp; development</subject><issn>0009-2665</issn><issn>1520-6890</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kU9P3DAQxa2qqGyBT1CpstRLD5tde2I7cW9o2QUk_h3gHHmdyW5QElM7KbSHfna87MKBA6enkX_veUaPkG-cTTgDPjU2TOwaW49_JmAZk6n-REZcAktUrtlnMmKM6QSUkvvkawj3cZQSsi9kP1UyZ6nUI_L_xnk3BLpo3CNd1NiUtHKeXuFTn5xih970tevojXd9lPmTXZtuhfQS26U3HdLFgA2dYdOEX_TS9Ohr04Qxna2NN3Yz_nsJGNMTDPUqqunKzWvTYMwJh2SvigY82ukBuVvMb2dnycX16fns-CIxaZb2CaABkZVCSGEBrM7zUnCdCyVKLZBryJVJkaGQslRc5BUz2gJqZNkSKlDpAfm5zX3w7veAoS_aOti4drwhnl9AJjUoAZpF9Mc79N4NvovbRSoTMgfJeaTSLWW9C8FjVTz4ujX-b8FZsamniPUUu3qKXT3R9X2XPSxbLN88r31EYLoFNu63fz-KfAbXDJ1h</recordid><startdate>20230208</startdate><enddate>20230208</enddate><creator>Zhang, Guobin</creator><creator>Qu, Zhiguo</creator><creator>Tao, Wen-Quan</creator><creator>Wang, Xueliang</creator><creator>Wu, Lizhen</creator><creator>Wu, Siyuan</creator><creator>Xie, Xu</creator><creator>Tongsh, Chasen</creator><creator>Huo, Wenming</creator><creator>Bao, Zhiming</creator><creator>Jiao, Kui</creator><creator>Wang, Yun</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4922-4967</orcidid><orcidid>https://orcid.org/0000-0002-1296-1330</orcidid><orcidid>https://orcid.org/0000-0003-2035-3148</orcidid><orcidid>https://orcid.org/0000-0002-2348-6299</orcidid><orcidid>https://orcid.org/0000-0003-1469-6152</orcidid></search><sort><creationdate>20230208</creationdate><title>Porous Flow Field for Next-Generation Proton Exchange Membrane Fuel Cells: Materials, Characterization, Design, and Challenges</title><author>Zhang, Guobin ; Qu, Zhiguo ; Tao, Wen-Quan ; Wang, Xueliang ; Wu, Lizhen ; Wu, Siyuan ; Xie, Xu ; Tongsh, Chasen ; Huo, Wenming ; Bao, Zhiming ; Jiao, Kui ; Wang, Yun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a373t-2ea247d4454c22c988d4198464d94e19286a3e0e455d6148f0a9c2e9e07b2f263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial intelligence</topic><topic>Chemical reactions</topic><topic>Conduction heating</topic><topic>Design optimization</topic><topic>Electrical conduction</topic><topic>Electrochemistry</topic><topic>Fabrication</topic><topic>Flow channels</topic><topic>Fuel cells</topic><topic>Fuel technology</topic><topic>Liquid flow</topic><topic>Proton exchange membrane fuel cells</topic><topic>Protons</topic><topic>R&amp;D</topic><topic>Research &amp; development</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Guobin</creatorcontrib><creatorcontrib>Qu, Zhiguo</creatorcontrib><creatorcontrib>Tao, Wen-Quan</creatorcontrib><creatorcontrib>Wang, Xueliang</creatorcontrib><creatorcontrib>Wu, Lizhen</creatorcontrib><creatorcontrib>Wu, Siyuan</creatorcontrib><creatorcontrib>Xie, Xu</creatorcontrib><creatorcontrib>Tongsh, Chasen</creatorcontrib><creatorcontrib>Huo, Wenming</creatorcontrib><creatorcontrib>Bao, Zhiming</creatorcontrib><creatorcontrib>Jiao, Kui</creatorcontrib><creatorcontrib>Wang, Yun</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Chemical reviews</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Guobin</au><au>Qu, Zhiguo</au><au>Tao, Wen-Quan</au><au>Wang, Xueliang</au><au>Wu, Lizhen</au><au>Wu, Siyuan</au><au>Xie, Xu</au><au>Tongsh, Chasen</au><au>Huo, Wenming</au><au>Bao, Zhiming</au><au>Jiao, Kui</au><au>Wang, Yun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Porous Flow Field for Next-Generation Proton Exchange Membrane Fuel Cells: Materials, Characterization, Design, and Challenges</atitle><jtitle>Chemical reviews</jtitle><addtitle>Chem. Rev</addtitle><date>2023-02-08</date><risdate>2023</risdate><volume>123</volume><issue>3</issue><spage>989</spage><epage>1039</epage><pages>989-1039</pages><issn>0009-2665</issn><eissn>1520-6890</eissn><abstract>Porous flow fields distribute fuel and oxygen for the electrochemical reactions of proton exchange membrane (PEM) fuel cells through their pore network instead of conventional flow channels. This type of flow fields has showed great promises in enhancing reactant supply, heat removal, and electrical conduction, reducing the concentration performance loss and improving operational stability for fuel cells. This review presents the research and development progress of porous flow fields with insights for next-generation PEM fuel cells of high power density (e.g., ∼9.0 kW L–1). Materials, fabrication methods, fundamentals, and fuel cell performance associated with porous flow fields are discussed in depth. Major challenges are described and explained, along with several future directions, including separated gas/liquid flow configurations, integrated porous structure, full morphology modeling, data-driven methods, and artificial intelligence-assisted design/optimization.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>36580359</pmid><doi>10.1021/acs.chemrev.2c00539</doi><tpages>51</tpages><orcidid>https://orcid.org/0000-0002-4922-4967</orcidid><orcidid>https://orcid.org/0000-0002-1296-1330</orcidid><orcidid>https://orcid.org/0000-0003-2035-3148</orcidid><orcidid>https://orcid.org/0000-0002-2348-6299</orcidid><orcidid>https://orcid.org/0000-0003-1469-6152</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0009-2665
ispartof Chemical reviews, 2023-02, Vol.123 (3), p.989-1039
issn 0009-2665
1520-6890
language eng
recordid cdi_proquest_miscellaneous_2759264290
source ACS Publications
subjects Artificial intelligence
Chemical reactions
Conduction heating
Design optimization
Electrical conduction
Electrochemistry
Fabrication
Flow channels
Fuel cells
Fuel technology
Liquid flow
Proton exchange membrane fuel cells
Protons
R&D
Research & development
title Porous Flow Field for Next-Generation Proton Exchange Membrane Fuel Cells: Materials, Characterization, Design, and Challenges
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T23%3A52%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Porous%20Flow%20Field%20for%20Next-Generation%20Proton%20Exchange%20Membrane%20Fuel%20Cells:%20Materials,%20Characterization,%20Design,%20and%20Challenges&rft.jtitle=Chemical%20reviews&rft.au=Zhang,%20Guobin&rft.date=2023-02-08&rft.volume=123&rft.issue=3&rft.spage=989&rft.epage=1039&rft.pages=989-1039&rft.issn=0009-2665&rft.eissn=1520-6890&rft_id=info:doi/10.1021/acs.chemrev.2c00539&rft_dat=%3Cproquest_cross%3E2774582511%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2774582511&rft_id=info:pmid/36580359&rfr_iscdi=true