Estimating the distribution of ratio of paired event times in phase II oncology trials

With the rapid development of new anti‐cancer agents which are cytostatic, new endpoints are needed to better measure treatment efficacy in phase II trials. For this purpose, Von Hoff (1998) proposed the growth modulation index (GMI), that is, the ratio between times to progression or progression‐fr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistics in medicine 2023-02, Vol.42 (3), p.388-406
Hauptverfasser: Chen, Li, Burkard, Mark, Wu, Jianrong, Kolesar, Jill M., Wang, Chi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 406
container_issue 3
container_start_page 388
container_title Statistics in medicine
container_volume 42
creator Chen, Li
Burkard, Mark
Wu, Jianrong
Kolesar, Jill M.
Wang, Chi
description With the rapid development of new anti‐cancer agents which are cytostatic, new endpoints are needed to better measure treatment efficacy in phase II trials. For this purpose, Von Hoff (1998) proposed the growth modulation index (GMI), that is, the ratio between times to progression or progression‐free survival times in two successive treatment lines. An essential task in studies using GMI as an endpoint is to estimate the distribution of GMI. Traditional methods for survival data have been used for estimating the GMI distribution because censoring is common for GMI data. However, we point out that the independent censoring assumption required by traditional survival methods is always violated for GMI, which may lead to severely biased results. In this paper, we construct both nonparametric and parametric estimators for the distribution of GMI, accounting for the dependent censoring of GMI. Extensive simulation studies show that our nonparametric estimators perform well in practical situations and outperform existing estimators, and our parametric estimators perform better than our nonparametric estimators and existing estimators when the parametric model is correctly specified. A phase II clinical trial using GMI as the primary endpoint is provided for illustration.
doi_str_mv 10.1002/sim.9622
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2759002829</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2759002829</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3442-4e8f3b299a479dc376aab210f47d854f4345336aba32afcb1c03a3755fe0cda23</originalsourceid><addsrcrecordid>eNp1kF1LwzAUQIMobk7BXyABX3zpzEeTtI8yphYmPvjxWtI22TLapiatsn9v5qaC4NO9kHMP4QBwjtEUI0SuvWmmKSfkAIwxSkWECEsOwRgRISIuMBuBE-_XCGHMiDgGI8qZYAljY_A6971pZG_aJexXClbG984UQ29sC62GLjzZ7dJJ41QF1btqexhOlIemhd1KegWzDNq2tLVdbmC4lrU_BUc6DHW2nxPwcjt_nt1Hi8e7bHaziEoaxySKVaJpQdJUxiKtSiq4lAXBSMeiSlisYxozSrksJCVSlwUuEZVUMKYVKitJ6ARc7byds2-D8n3eGF-qupatsoPPiWBpCJSQNKCXf9C1HVwbfhcozjnhVKS_wtJZ753SeedCH7fJMcq3rfPQOt-2DujFXjgUjap-wO-4AYh2wIep1eZfUf6UPXwJPwGYtYdz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2766626379</pqid></control><display><type>article</type><title>Estimating the distribution of ratio of paired event times in phase II oncology trials</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Chen, Li ; Burkard, Mark ; Wu, Jianrong ; Kolesar, Jill M. ; Wang, Chi</creator><creatorcontrib>Chen, Li ; Burkard, Mark ; Wu, Jianrong ; Kolesar, Jill M. ; Wang, Chi</creatorcontrib><description>With the rapid development of new anti‐cancer agents which are cytostatic, new endpoints are needed to better measure treatment efficacy in phase II trials. For this purpose, Von Hoff (1998) proposed the growth modulation index (GMI), that is, the ratio between times to progression or progression‐free survival times in two successive treatment lines. An essential task in studies using GMI as an endpoint is to estimate the distribution of GMI. Traditional methods for survival data have been used for estimating the GMI distribution because censoring is common for GMI data. However, we point out that the independent censoring assumption required by traditional survival methods is always violated for GMI, which may lead to severely biased results. In this paper, we construct both nonparametric and parametric estimators for the distribution of GMI, accounting for the dependent censoring of GMI. Extensive simulation studies show that our nonparametric estimators perform well in practical situations and outperform existing estimators, and our parametric estimators perform better than our nonparametric estimators and existing estimators when the parametric model is correctly specified. A phase II clinical trial using GMI as the primary endpoint is provided for illustration.</description><identifier>ISSN: 0277-6715</identifier><identifier>EISSN: 1097-0258</identifier><identifier>DOI: 10.1002/sim.9622</identifier><identifier>PMID: 36575855</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Antineoplastic Agents - therapeutic use ; Cancer ; Cancer therapies ; Clinical trials ; Clinical Trials, Phase II as Topic ; Computer Simulation ; dependent censoring ; Humans ; Medical Oncology ; Neoplasms - drug therapy ; nonparametric and parametric estimators ; Nonparametric statistics ; Oncology ; paired event times ; Phase II trial ; progression‐free survival ; Ratios ; Survival Analysis ; time to progression</subject><ispartof>Statistics in medicine, 2023-02, Vol.42 (3), p.388-406</ispartof><rights>2022 John Wiley &amp; Sons Ltd.</rights><rights>2023 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3442-4e8f3b299a479dc376aab210f47d854f4345336aba32afcb1c03a3755fe0cda23</cites><orcidid>0000-0001-9719-7652 ; 0000-0003-2395-4619</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsim.9622$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsim.9622$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,27907,27908,45557,45558</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36575855$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Li</creatorcontrib><creatorcontrib>Burkard, Mark</creatorcontrib><creatorcontrib>Wu, Jianrong</creatorcontrib><creatorcontrib>Kolesar, Jill M.</creatorcontrib><creatorcontrib>Wang, Chi</creatorcontrib><title>Estimating the distribution of ratio of paired event times in phase II oncology trials</title><title>Statistics in medicine</title><addtitle>Stat Med</addtitle><description>With the rapid development of new anti‐cancer agents which are cytostatic, new endpoints are needed to better measure treatment efficacy in phase II trials. For this purpose, Von Hoff (1998) proposed the growth modulation index (GMI), that is, the ratio between times to progression or progression‐free survival times in two successive treatment lines. An essential task in studies using GMI as an endpoint is to estimate the distribution of GMI. Traditional methods for survival data have been used for estimating the GMI distribution because censoring is common for GMI data. However, we point out that the independent censoring assumption required by traditional survival methods is always violated for GMI, which may lead to severely biased results. In this paper, we construct both nonparametric and parametric estimators for the distribution of GMI, accounting for the dependent censoring of GMI. Extensive simulation studies show that our nonparametric estimators perform well in practical situations and outperform existing estimators, and our parametric estimators perform better than our nonparametric estimators and existing estimators when the parametric model is correctly specified. A phase II clinical trial using GMI as the primary endpoint is provided for illustration.</description><subject>Antineoplastic Agents - therapeutic use</subject><subject>Cancer</subject><subject>Cancer therapies</subject><subject>Clinical trials</subject><subject>Clinical Trials, Phase II as Topic</subject><subject>Computer Simulation</subject><subject>dependent censoring</subject><subject>Humans</subject><subject>Medical Oncology</subject><subject>Neoplasms - drug therapy</subject><subject>nonparametric and parametric estimators</subject><subject>Nonparametric statistics</subject><subject>Oncology</subject><subject>paired event times</subject><subject>Phase II trial</subject><subject>progression‐free survival</subject><subject>Ratios</subject><subject>Survival Analysis</subject><subject>time to progression</subject><issn>0277-6715</issn><issn>1097-0258</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kF1LwzAUQIMobk7BXyABX3zpzEeTtI8yphYmPvjxWtI22TLapiatsn9v5qaC4NO9kHMP4QBwjtEUI0SuvWmmKSfkAIwxSkWECEsOwRgRISIuMBuBE-_XCGHMiDgGI8qZYAljY_A6971pZG_aJexXClbG984UQ29sC62GLjzZ7dJJ41QF1btqexhOlIemhd1KegWzDNq2tLVdbmC4lrU_BUc6DHW2nxPwcjt_nt1Hi8e7bHaziEoaxySKVaJpQdJUxiKtSiq4lAXBSMeiSlisYxozSrksJCVSlwUuEZVUMKYVKitJ6ARc7byds2-D8n3eGF-qupatsoPPiWBpCJSQNKCXf9C1HVwbfhcozjnhVKS_wtJZ753SeedCH7fJMcq3rfPQOt-2DujFXjgUjap-wO-4AYh2wIep1eZfUf6UPXwJPwGYtYdz</recordid><startdate>20230210</startdate><enddate>20230210</enddate><creator>Chen, Li</creator><creator>Burkard, Mark</creator><creator>Wu, Jianrong</creator><creator>Kolesar, Jill M.</creator><creator>Wang, Chi</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9719-7652</orcidid><orcidid>https://orcid.org/0000-0003-2395-4619</orcidid></search><sort><creationdate>20230210</creationdate><title>Estimating the distribution of ratio of paired event times in phase II oncology trials</title><author>Chen, Li ; Burkard, Mark ; Wu, Jianrong ; Kolesar, Jill M. ; Wang, Chi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3442-4e8f3b299a479dc376aab210f47d854f4345336aba32afcb1c03a3755fe0cda23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Antineoplastic Agents - therapeutic use</topic><topic>Cancer</topic><topic>Cancer therapies</topic><topic>Clinical trials</topic><topic>Clinical Trials, Phase II as Topic</topic><topic>Computer Simulation</topic><topic>dependent censoring</topic><topic>Humans</topic><topic>Medical Oncology</topic><topic>Neoplasms - drug therapy</topic><topic>nonparametric and parametric estimators</topic><topic>Nonparametric statistics</topic><topic>Oncology</topic><topic>paired event times</topic><topic>Phase II trial</topic><topic>progression‐free survival</topic><topic>Ratios</topic><topic>Survival Analysis</topic><topic>time to progression</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Li</creatorcontrib><creatorcontrib>Burkard, Mark</creatorcontrib><creatorcontrib>Wu, Jianrong</creatorcontrib><creatorcontrib>Kolesar, Jill M.</creatorcontrib><creatorcontrib>Wang, Chi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Statistics in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Li</au><au>Burkard, Mark</au><au>Wu, Jianrong</au><au>Kolesar, Jill M.</au><au>Wang, Chi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimating the distribution of ratio of paired event times in phase II oncology trials</atitle><jtitle>Statistics in medicine</jtitle><addtitle>Stat Med</addtitle><date>2023-02-10</date><risdate>2023</risdate><volume>42</volume><issue>3</issue><spage>388</spage><epage>406</epage><pages>388-406</pages><issn>0277-6715</issn><eissn>1097-0258</eissn><abstract>With the rapid development of new anti‐cancer agents which are cytostatic, new endpoints are needed to better measure treatment efficacy in phase II trials. For this purpose, Von Hoff (1998) proposed the growth modulation index (GMI), that is, the ratio between times to progression or progression‐free survival times in two successive treatment lines. An essential task in studies using GMI as an endpoint is to estimate the distribution of GMI. Traditional methods for survival data have been used for estimating the GMI distribution because censoring is common for GMI data. However, we point out that the independent censoring assumption required by traditional survival methods is always violated for GMI, which may lead to severely biased results. In this paper, we construct both nonparametric and parametric estimators for the distribution of GMI, accounting for the dependent censoring of GMI. Extensive simulation studies show that our nonparametric estimators perform well in practical situations and outperform existing estimators, and our parametric estimators perform better than our nonparametric estimators and existing estimators when the parametric model is correctly specified. A phase II clinical trial using GMI as the primary endpoint is provided for illustration.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>36575855</pmid><doi>10.1002/sim.9622</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0001-9719-7652</orcidid><orcidid>https://orcid.org/0000-0003-2395-4619</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0277-6715
ispartof Statistics in medicine, 2023-02, Vol.42 (3), p.388-406
issn 0277-6715
1097-0258
language eng
recordid cdi_proquest_miscellaneous_2759002829
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Antineoplastic Agents - therapeutic use
Cancer
Cancer therapies
Clinical trials
Clinical Trials, Phase II as Topic
Computer Simulation
dependent censoring
Humans
Medical Oncology
Neoplasms - drug therapy
nonparametric and parametric estimators
Nonparametric statistics
Oncology
paired event times
Phase II trial
progression‐free survival
Ratios
Survival Analysis
time to progression
title Estimating the distribution of ratio of paired event times in phase II oncology trials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T11%3A15%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimating%20the%20distribution%20of%20ratio%20of%20paired%20event%20times%20in%20phase%20II%20oncology%20trials&rft.jtitle=Statistics%20in%20medicine&rft.au=Chen,%20Li&rft.date=2023-02-10&rft.volume=42&rft.issue=3&rft.spage=388&rft.epage=406&rft.pages=388-406&rft.issn=0277-6715&rft.eissn=1097-0258&rft_id=info:doi/10.1002/sim.9622&rft_dat=%3Cproquest_cross%3E2759002829%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2766626379&rft_id=info:pmid/36575855&rfr_iscdi=true