Estimating the distribution of ratio of paired event times in phase II oncology trials
With the rapid development of new anti‐cancer agents which are cytostatic, new endpoints are needed to better measure treatment efficacy in phase II trials. For this purpose, Von Hoff (1998) proposed the growth modulation index (GMI), that is, the ratio between times to progression or progression‐fr...
Gespeichert in:
Veröffentlicht in: | Statistics in medicine 2023-02, Vol.42 (3), p.388-406 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 406 |
---|---|
container_issue | 3 |
container_start_page | 388 |
container_title | Statistics in medicine |
container_volume | 42 |
creator | Chen, Li Burkard, Mark Wu, Jianrong Kolesar, Jill M. Wang, Chi |
description | With the rapid development of new anti‐cancer agents which are cytostatic, new endpoints are needed to better measure treatment efficacy in phase II trials. For this purpose, Von Hoff (1998) proposed the growth modulation index (GMI), that is, the ratio between times to progression or progression‐free survival times in two successive treatment lines. An essential task in studies using GMI as an endpoint is to estimate the distribution of GMI. Traditional methods for survival data have been used for estimating the GMI distribution because censoring is common for GMI data. However, we point out that the independent censoring assumption required by traditional survival methods is always violated for GMI, which may lead to severely biased results. In this paper, we construct both nonparametric and parametric estimators for the distribution of GMI, accounting for the dependent censoring of GMI. Extensive simulation studies show that our nonparametric estimators perform well in practical situations and outperform existing estimators, and our parametric estimators perform better than our nonparametric estimators and existing estimators when the parametric model is correctly specified. A phase II clinical trial using GMI as the primary endpoint is provided for illustration. |
doi_str_mv | 10.1002/sim.9622 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2759002829</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2759002829</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3442-4e8f3b299a479dc376aab210f47d854f4345336aba32afcb1c03a3755fe0cda23</originalsourceid><addsrcrecordid>eNp1kF1LwzAUQIMobk7BXyABX3zpzEeTtI8yphYmPvjxWtI22TLapiatsn9v5qaC4NO9kHMP4QBwjtEUI0SuvWmmKSfkAIwxSkWECEsOwRgRISIuMBuBE-_XCGHMiDgGI8qZYAljY_A6971pZG_aJexXClbG984UQ29sC62GLjzZ7dJJ41QF1btqexhOlIemhd1KegWzDNq2tLVdbmC4lrU_BUc6DHW2nxPwcjt_nt1Hi8e7bHaziEoaxySKVaJpQdJUxiKtSiq4lAXBSMeiSlisYxozSrksJCVSlwUuEZVUMKYVKitJ6ARc7byds2-D8n3eGF-qupatsoPPiWBpCJSQNKCXf9C1HVwbfhcozjnhVKS_wtJZ753SeedCH7fJMcq3rfPQOt-2DujFXjgUjap-wO-4AYh2wIep1eZfUf6UPXwJPwGYtYdz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2766626379</pqid></control><display><type>article</type><title>Estimating the distribution of ratio of paired event times in phase II oncology trials</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Chen, Li ; Burkard, Mark ; Wu, Jianrong ; Kolesar, Jill M. ; Wang, Chi</creator><creatorcontrib>Chen, Li ; Burkard, Mark ; Wu, Jianrong ; Kolesar, Jill M. ; Wang, Chi</creatorcontrib><description>With the rapid development of new anti‐cancer agents which are cytostatic, new endpoints are needed to better measure treatment efficacy in phase II trials. For this purpose, Von Hoff (1998) proposed the growth modulation index (GMI), that is, the ratio between times to progression or progression‐free survival times in two successive treatment lines. An essential task in studies using GMI as an endpoint is to estimate the distribution of GMI. Traditional methods for survival data have been used for estimating the GMI distribution because censoring is common for GMI data. However, we point out that the independent censoring assumption required by traditional survival methods is always violated for GMI, which may lead to severely biased results. In this paper, we construct both nonparametric and parametric estimators for the distribution of GMI, accounting for the dependent censoring of GMI. Extensive simulation studies show that our nonparametric estimators perform well in practical situations and outperform existing estimators, and our parametric estimators perform better than our nonparametric estimators and existing estimators when the parametric model is correctly specified. A phase II clinical trial using GMI as the primary endpoint is provided for illustration.</description><identifier>ISSN: 0277-6715</identifier><identifier>EISSN: 1097-0258</identifier><identifier>DOI: 10.1002/sim.9622</identifier><identifier>PMID: 36575855</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Antineoplastic Agents - therapeutic use ; Cancer ; Cancer therapies ; Clinical trials ; Clinical Trials, Phase II as Topic ; Computer Simulation ; dependent censoring ; Humans ; Medical Oncology ; Neoplasms - drug therapy ; nonparametric and parametric estimators ; Nonparametric statistics ; Oncology ; paired event times ; Phase II trial ; progression‐free survival ; Ratios ; Survival Analysis ; time to progression</subject><ispartof>Statistics in medicine, 2023-02, Vol.42 (3), p.388-406</ispartof><rights>2022 John Wiley & Sons Ltd.</rights><rights>2023 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3442-4e8f3b299a479dc376aab210f47d854f4345336aba32afcb1c03a3755fe0cda23</cites><orcidid>0000-0001-9719-7652 ; 0000-0003-2395-4619</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsim.9622$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsim.9622$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,27907,27908,45557,45558</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36575855$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Li</creatorcontrib><creatorcontrib>Burkard, Mark</creatorcontrib><creatorcontrib>Wu, Jianrong</creatorcontrib><creatorcontrib>Kolesar, Jill M.</creatorcontrib><creatorcontrib>Wang, Chi</creatorcontrib><title>Estimating the distribution of ratio of paired event times in phase II oncology trials</title><title>Statistics in medicine</title><addtitle>Stat Med</addtitle><description>With the rapid development of new anti‐cancer agents which are cytostatic, new endpoints are needed to better measure treatment efficacy in phase II trials. For this purpose, Von Hoff (1998) proposed the growth modulation index (GMI), that is, the ratio between times to progression or progression‐free survival times in two successive treatment lines. An essential task in studies using GMI as an endpoint is to estimate the distribution of GMI. Traditional methods for survival data have been used for estimating the GMI distribution because censoring is common for GMI data. However, we point out that the independent censoring assumption required by traditional survival methods is always violated for GMI, which may lead to severely biased results. In this paper, we construct both nonparametric and parametric estimators for the distribution of GMI, accounting for the dependent censoring of GMI. Extensive simulation studies show that our nonparametric estimators perform well in practical situations and outperform existing estimators, and our parametric estimators perform better than our nonparametric estimators and existing estimators when the parametric model is correctly specified. A phase II clinical trial using GMI as the primary endpoint is provided for illustration.</description><subject>Antineoplastic Agents - therapeutic use</subject><subject>Cancer</subject><subject>Cancer therapies</subject><subject>Clinical trials</subject><subject>Clinical Trials, Phase II as Topic</subject><subject>Computer Simulation</subject><subject>dependent censoring</subject><subject>Humans</subject><subject>Medical Oncology</subject><subject>Neoplasms - drug therapy</subject><subject>nonparametric and parametric estimators</subject><subject>Nonparametric statistics</subject><subject>Oncology</subject><subject>paired event times</subject><subject>Phase II trial</subject><subject>progression‐free survival</subject><subject>Ratios</subject><subject>Survival Analysis</subject><subject>time to progression</subject><issn>0277-6715</issn><issn>1097-0258</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kF1LwzAUQIMobk7BXyABX3zpzEeTtI8yphYmPvjxWtI22TLapiatsn9v5qaC4NO9kHMP4QBwjtEUI0SuvWmmKSfkAIwxSkWECEsOwRgRISIuMBuBE-_XCGHMiDgGI8qZYAljY_A6971pZG_aJexXClbG984UQ29sC62GLjzZ7dJJ41QF1btqexhOlIemhd1KegWzDNq2tLVdbmC4lrU_BUc6DHW2nxPwcjt_nt1Hi8e7bHaziEoaxySKVaJpQdJUxiKtSiq4lAXBSMeiSlisYxozSrksJCVSlwUuEZVUMKYVKitJ6ARc7byds2-D8n3eGF-qupatsoPPiWBpCJSQNKCXf9C1HVwbfhcozjnhVKS_wtJZ753SeedCH7fJMcq3rfPQOt-2DujFXjgUjap-wO-4AYh2wIep1eZfUf6UPXwJPwGYtYdz</recordid><startdate>20230210</startdate><enddate>20230210</enddate><creator>Chen, Li</creator><creator>Burkard, Mark</creator><creator>Wu, Jianrong</creator><creator>Kolesar, Jill M.</creator><creator>Wang, Chi</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9719-7652</orcidid><orcidid>https://orcid.org/0000-0003-2395-4619</orcidid></search><sort><creationdate>20230210</creationdate><title>Estimating the distribution of ratio of paired event times in phase II oncology trials</title><author>Chen, Li ; Burkard, Mark ; Wu, Jianrong ; Kolesar, Jill M. ; Wang, Chi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3442-4e8f3b299a479dc376aab210f47d854f4345336aba32afcb1c03a3755fe0cda23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Antineoplastic Agents - therapeutic use</topic><topic>Cancer</topic><topic>Cancer therapies</topic><topic>Clinical trials</topic><topic>Clinical Trials, Phase II as Topic</topic><topic>Computer Simulation</topic><topic>dependent censoring</topic><topic>Humans</topic><topic>Medical Oncology</topic><topic>Neoplasms - drug therapy</topic><topic>nonparametric and parametric estimators</topic><topic>Nonparametric statistics</topic><topic>Oncology</topic><topic>paired event times</topic><topic>Phase II trial</topic><topic>progression‐free survival</topic><topic>Ratios</topic><topic>Survival Analysis</topic><topic>time to progression</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Li</creatorcontrib><creatorcontrib>Burkard, Mark</creatorcontrib><creatorcontrib>Wu, Jianrong</creatorcontrib><creatorcontrib>Kolesar, Jill M.</creatorcontrib><creatorcontrib>Wang, Chi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Statistics in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Li</au><au>Burkard, Mark</au><au>Wu, Jianrong</au><au>Kolesar, Jill M.</au><au>Wang, Chi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimating the distribution of ratio of paired event times in phase II oncology trials</atitle><jtitle>Statistics in medicine</jtitle><addtitle>Stat Med</addtitle><date>2023-02-10</date><risdate>2023</risdate><volume>42</volume><issue>3</issue><spage>388</spage><epage>406</epage><pages>388-406</pages><issn>0277-6715</issn><eissn>1097-0258</eissn><abstract>With the rapid development of new anti‐cancer agents which are cytostatic, new endpoints are needed to better measure treatment efficacy in phase II trials. For this purpose, Von Hoff (1998) proposed the growth modulation index (GMI), that is, the ratio between times to progression or progression‐free survival times in two successive treatment lines. An essential task in studies using GMI as an endpoint is to estimate the distribution of GMI. Traditional methods for survival data have been used for estimating the GMI distribution because censoring is common for GMI data. However, we point out that the independent censoring assumption required by traditional survival methods is always violated for GMI, which may lead to severely biased results. In this paper, we construct both nonparametric and parametric estimators for the distribution of GMI, accounting for the dependent censoring of GMI. Extensive simulation studies show that our nonparametric estimators perform well in practical situations and outperform existing estimators, and our parametric estimators perform better than our nonparametric estimators and existing estimators when the parametric model is correctly specified. A phase II clinical trial using GMI as the primary endpoint is provided for illustration.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><pmid>36575855</pmid><doi>10.1002/sim.9622</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0001-9719-7652</orcidid><orcidid>https://orcid.org/0000-0003-2395-4619</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0277-6715 |
ispartof | Statistics in medicine, 2023-02, Vol.42 (3), p.388-406 |
issn | 0277-6715 1097-0258 |
language | eng |
recordid | cdi_proquest_miscellaneous_2759002829 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Antineoplastic Agents - therapeutic use Cancer Cancer therapies Clinical trials Clinical Trials, Phase II as Topic Computer Simulation dependent censoring Humans Medical Oncology Neoplasms - drug therapy nonparametric and parametric estimators Nonparametric statistics Oncology paired event times Phase II trial progression‐free survival Ratios Survival Analysis time to progression |
title | Estimating the distribution of ratio of paired event times in phase II oncology trials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T11%3A15%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimating%20the%20distribution%20of%20ratio%20of%20paired%20event%20times%20in%20phase%20II%20oncology%20trials&rft.jtitle=Statistics%20in%20medicine&rft.au=Chen,%20Li&rft.date=2023-02-10&rft.volume=42&rft.issue=3&rft.spage=388&rft.epage=406&rft.pages=388-406&rft.issn=0277-6715&rft.eissn=1097-0258&rft_id=info:doi/10.1002/sim.9622&rft_dat=%3Cproquest_cross%3E2759002829%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2766626379&rft_id=info:pmid/36575855&rfr_iscdi=true |