Analytical methods for polynomial weighted convolution surfaces with various kernels

Convolution surface has the advantage of being crease-free and bulge-free over other kinds of implicit surfaces. Among the various types of skeletal elements, line segments can be considered one of the most fundamental as they can approximate curve skeletons. This paper presents analytical solutions...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & graphics 2002-06, Vol.26 (3), p.437-447
Hauptverfasser: Jin, Xiaogang, Tai, Chiew-Lan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 447
container_issue 3
container_start_page 437
container_title Computers & graphics
container_volume 26
creator Jin, Xiaogang
Tai, Chiew-Lan
description Convolution surface has the advantage of being crease-free and bulge-free over other kinds of implicit surfaces. Among the various types of skeletal elements, line segments can be considered one of the most fundamental as they can approximate curve skeletons. This paper presents analytical solutions for convolving line segments with varying kernels modulated by polynomial weighted functions. We derive the closed-form formulae for most classical kernel functions, namely Gaussian, inverse linear, inverse squared, Cauchy, and quartic functions, and compare their computational complexity. These analytical solutions can be incorporated into existing implicit surface modeling systems for more convenient modeling of generalized cylindrical shapes. We demonstrate their high potentials for modeling and animating branching and tubular organic objects with some examples. We also propose a new competitive kernel function that has a smoothness control parameter.
doi_str_mv 10.1016/S0097-8493(02)00087-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27587772</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0097849302000870</els_id><sourcerecordid>27587772</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-3d5ca6c756763fd6e34ee56d983b56b0653671c28d0f675c5dfe77d02f9d53e23</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWKs_QdiT6GE1m2w-9iSl-AUFD9Zz2CazNprd1CTb0n_vthWvngaG532ZeRC6LPBtgQt-94ZxJXJZVvQakxuMsRQ5PkKjQgqaCy7LYzT6Q07RWYyfA0QIL0doPulqt01W1y5rIS29iVnjQ7bybtv51g7rDdiPZQKTad-tveuT9V0W-9DUGmK2sWmZretgfR-zLwgduHiOTpraRbj4nWP0_vgwnz7ns9enl-lklmtKZcqpYbrmWjAuOG0MB1oCMG4qSReMLzBnlItCE2lwwwXTzDQghMGkqQyjQOgYXR16V8F_9xCTam3U4FzdwXCOIoJJIcQOZAdQBx9jgEatgm3rsFUFVjuHau9Q7QQpTNTeocJD7v6QG56CtYWgorbQaTA2gE7KePtPww9SEHq2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27587772</pqid></control><display><type>article</type><title>Analytical methods for polynomial weighted convolution surfaces with various kernels</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Jin, Xiaogang ; Tai, Chiew-Lan</creator><creatorcontrib>Jin, Xiaogang ; Tai, Chiew-Lan</creatorcontrib><description>Convolution surface has the advantage of being crease-free and bulge-free over other kinds of implicit surfaces. Among the various types of skeletal elements, line segments can be considered one of the most fundamental as they can approximate curve skeletons. This paper presents analytical solutions for convolving line segments with varying kernels modulated by polynomial weighted functions. We derive the closed-form formulae for most classical kernel functions, namely Gaussian, inverse linear, inverse squared, Cauchy, and quartic functions, and compare their computational complexity. These analytical solutions can be incorporated into existing implicit surface modeling systems for more convenient modeling of generalized cylindrical shapes. We demonstrate their high potentials for modeling and animating branching and tubular organic objects with some examples. We also propose a new competitive kernel function that has a smoothness control parameter.</description><identifier>ISSN: 0097-8493</identifier><identifier>EISSN: 1873-7684</identifier><identifier>DOI: 10.1016/S0097-8493(02)00087-0</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Analytical solution ; Convolution surface ; Implicit surface ; Polynomial weighted distribution</subject><ispartof>Computers &amp; graphics, 2002-06, Vol.26 (3), p.437-447</ispartof><rights>2002 Elsevier Science Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-3d5ca6c756763fd6e34ee56d983b56b0653671c28d0f675c5dfe77d02f9d53e23</citedby><cites>FETCH-LOGICAL-c338t-3d5ca6c756763fd6e34ee56d983b56b0653671c28d0f675c5dfe77d02f9d53e23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0097-8493(02)00087-0$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27926,27927,45997</link.rule.ids></links><search><creatorcontrib>Jin, Xiaogang</creatorcontrib><creatorcontrib>Tai, Chiew-Lan</creatorcontrib><title>Analytical methods for polynomial weighted convolution surfaces with various kernels</title><title>Computers &amp; graphics</title><description>Convolution surface has the advantage of being crease-free and bulge-free over other kinds of implicit surfaces. Among the various types of skeletal elements, line segments can be considered one of the most fundamental as they can approximate curve skeletons. This paper presents analytical solutions for convolving line segments with varying kernels modulated by polynomial weighted functions. We derive the closed-form formulae for most classical kernel functions, namely Gaussian, inverse linear, inverse squared, Cauchy, and quartic functions, and compare their computational complexity. These analytical solutions can be incorporated into existing implicit surface modeling systems for more convenient modeling of generalized cylindrical shapes. We demonstrate their high potentials for modeling and animating branching and tubular organic objects with some examples. We also propose a new competitive kernel function that has a smoothness control parameter.</description><subject>Analytical solution</subject><subject>Convolution surface</subject><subject>Implicit surface</subject><subject>Polynomial weighted distribution</subject><issn>0097-8493</issn><issn>1873-7684</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWKs_QdiT6GE1m2w-9iSl-AUFD9Zz2CazNprd1CTb0n_vthWvngaG532ZeRC6LPBtgQt-94ZxJXJZVvQakxuMsRQ5PkKjQgqaCy7LYzT6Q07RWYyfA0QIL0doPulqt01W1y5rIS29iVnjQ7bybtv51g7rDdiPZQKTad-tveuT9V0W-9DUGmK2sWmZretgfR-zLwgduHiOTpraRbj4nWP0_vgwnz7ns9enl-lklmtKZcqpYbrmWjAuOG0MB1oCMG4qSReMLzBnlItCE2lwwwXTzDQghMGkqQyjQOgYXR16V8F_9xCTam3U4FzdwXCOIoJJIcQOZAdQBx9jgEatgm3rsFUFVjuHau9Q7QQpTNTeocJD7v6QG56CtYWgorbQaTA2gE7KePtPww9SEHq2</recordid><startdate>20020601</startdate><enddate>20020601</enddate><creator>Jin, Xiaogang</creator><creator>Tai, Chiew-Lan</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20020601</creationdate><title>Analytical methods for polynomial weighted convolution surfaces with various kernels</title><author>Jin, Xiaogang ; Tai, Chiew-Lan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-3d5ca6c756763fd6e34ee56d983b56b0653671c28d0f675c5dfe77d02f9d53e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Analytical solution</topic><topic>Convolution surface</topic><topic>Implicit surface</topic><topic>Polynomial weighted distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jin, Xiaogang</creatorcontrib><creatorcontrib>Tai, Chiew-Lan</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers &amp; graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jin, Xiaogang</au><au>Tai, Chiew-Lan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analytical methods for polynomial weighted convolution surfaces with various kernels</atitle><jtitle>Computers &amp; graphics</jtitle><date>2002-06-01</date><risdate>2002</risdate><volume>26</volume><issue>3</issue><spage>437</spage><epage>447</epage><pages>437-447</pages><issn>0097-8493</issn><eissn>1873-7684</eissn><abstract>Convolution surface has the advantage of being crease-free and bulge-free over other kinds of implicit surfaces. Among the various types of skeletal elements, line segments can be considered one of the most fundamental as they can approximate curve skeletons. This paper presents analytical solutions for convolving line segments with varying kernels modulated by polynomial weighted functions. We derive the closed-form formulae for most classical kernel functions, namely Gaussian, inverse linear, inverse squared, Cauchy, and quartic functions, and compare their computational complexity. These analytical solutions can be incorporated into existing implicit surface modeling systems for more convenient modeling of generalized cylindrical shapes. We demonstrate their high potentials for modeling and animating branching and tubular organic objects with some examples. We also propose a new competitive kernel function that has a smoothness control parameter.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/S0097-8493(02)00087-0</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0097-8493
ispartof Computers & graphics, 2002-06, Vol.26 (3), p.437-447
issn 0097-8493
1873-7684
language eng
recordid cdi_proquest_miscellaneous_27587772
source Elsevier ScienceDirect Journals Complete
subjects Analytical solution
Convolution surface
Implicit surface
Polynomial weighted distribution
title Analytical methods for polynomial weighted convolution surfaces with various kernels
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T07%3A32%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analytical%20methods%20for%20polynomial%20weighted%20convolution%20surfaces%20with%20various%20kernels&rft.jtitle=Computers%20&%20graphics&rft.au=Jin,%20Xiaogang&rft.date=2002-06-01&rft.volume=26&rft.issue=3&rft.spage=437&rft.epage=447&rft.pages=437-447&rft.issn=0097-8493&rft.eissn=1873-7684&rft_id=info:doi/10.1016/S0097-8493(02)00087-0&rft_dat=%3Cproquest_cross%3E27587772%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27587772&rft_id=info:pmid/&rft_els_id=S0097849302000870&rfr_iscdi=true