Analytical methods for polynomial weighted convolution surfaces with various kernels
Convolution surface has the advantage of being crease-free and bulge-free over other kinds of implicit surfaces. Among the various types of skeletal elements, line segments can be considered one of the most fundamental as they can approximate curve skeletons. This paper presents analytical solutions...
Gespeichert in:
Veröffentlicht in: | Computers & graphics 2002-06, Vol.26 (3), p.437-447 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 447 |
---|---|
container_issue | 3 |
container_start_page | 437 |
container_title | Computers & graphics |
container_volume | 26 |
creator | Jin, Xiaogang Tai, Chiew-Lan |
description | Convolution surface has the advantage of being crease-free and bulge-free over other kinds of implicit surfaces. Among the various types of skeletal elements, line segments can be considered one of the most fundamental as they can approximate curve skeletons. This paper presents analytical solutions for convolving line segments with varying kernels modulated by polynomial weighted functions. We derive the closed-form formulae for most classical kernel functions, namely Gaussian, inverse linear, inverse squared, Cauchy, and quartic functions, and compare their computational complexity. These analytical solutions can be incorporated into existing implicit surface modeling systems for more convenient modeling of generalized cylindrical shapes. We demonstrate their high potentials for modeling and animating branching and tubular organic objects with some examples. We also propose a new competitive kernel function that has a smoothness control parameter. |
doi_str_mv | 10.1016/S0097-8493(02)00087-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27587772</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0097849302000870</els_id><sourcerecordid>27587772</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-3d5ca6c756763fd6e34ee56d983b56b0653671c28d0f675c5dfe77d02f9d53e23</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWKs_QdiT6GE1m2w-9iSl-AUFD9Zz2CazNprd1CTb0n_vthWvngaG532ZeRC6LPBtgQt-94ZxJXJZVvQakxuMsRQ5PkKjQgqaCy7LYzT6Q07RWYyfA0QIL0doPulqt01W1y5rIS29iVnjQ7bybtv51g7rDdiPZQKTad-tveuT9V0W-9DUGmK2sWmZretgfR-zLwgduHiOTpraRbj4nWP0_vgwnz7ns9enl-lklmtKZcqpYbrmWjAuOG0MB1oCMG4qSReMLzBnlItCE2lwwwXTzDQghMGkqQyjQOgYXR16V8F_9xCTam3U4FzdwXCOIoJJIcQOZAdQBx9jgEatgm3rsFUFVjuHau9Q7QQpTNTeocJD7v6QG56CtYWgorbQaTA2gE7KePtPww9SEHq2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27587772</pqid></control><display><type>article</type><title>Analytical methods for polynomial weighted convolution surfaces with various kernels</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Jin, Xiaogang ; Tai, Chiew-Lan</creator><creatorcontrib>Jin, Xiaogang ; Tai, Chiew-Lan</creatorcontrib><description>Convolution surface has the advantage of being crease-free and bulge-free over other kinds of implicit surfaces. Among the various types of skeletal elements, line segments can be considered one of the most fundamental as they can approximate curve skeletons. This paper presents analytical solutions for convolving line segments with varying kernels modulated by polynomial weighted functions. We derive the closed-form formulae for most classical kernel functions, namely Gaussian, inverse linear, inverse squared, Cauchy, and quartic functions, and compare their computational complexity. These analytical solutions can be incorporated into existing implicit surface modeling systems for more convenient modeling of generalized cylindrical shapes. We demonstrate their high potentials for modeling and animating branching and tubular organic objects with some examples. We also propose a new competitive kernel function that has a smoothness control parameter.</description><identifier>ISSN: 0097-8493</identifier><identifier>EISSN: 1873-7684</identifier><identifier>DOI: 10.1016/S0097-8493(02)00087-0</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Analytical solution ; Convolution surface ; Implicit surface ; Polynomial weighted distribution</subject><ispartof>Computers & graphics, 2002-06, Vol.26 (3), p.437-447</ispartof><rights>2002 Elsevier Science Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-3d5ca6c756763fd6e34ee56d983b56b0653671c28d0f675c5dfe77d02f9d53e23</citedby><cites>FETCH-LOGICAL-c338t-3d5ca6c756763fd6e34ee56d983b56b0653671c28d0f675c5dfe77d02f9d53e23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0097-8493(02)00087-0$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27926,27927,45997</link.rule.ids></links><search><creatorcontrib>Jin, Xiaogang</creatorcontrib><creatorcontrib>Tai, Chiew-Lan</creatorcontrib><title>Analytical methods for polynomial weighted convolution surfaces with various kernels</title><title>Computers & graphics</title><description>Convolution surface has the advantage of being crease-free and bulge-free over other kinds of implicit surfaces. Among the various types of skeletal elements, line segments can be considered one of the most fundamental as they can approximate curve skeletons. This paper presents analytical solutions for convolving line segments with varying kernels modulated by polynomial weighted functions. We derive the closed-form formulae for most classical kernel functions, namely Gaussian, inverse linear, inverse squared, Cauchy, and quartic functions, and compare their computational complexity. These analytical solutions can be incorporated into existing implicit surface modeling systems for more convenient modeling of generalized cylindrical shapes. We demonstrate their high potentials for modeling and animating branching and tubular organic objects with some examples. We also propose a new competitive kernel function that has a smoothness control parameter.</description><subject>Analytical solution</subject><subject>Convolution surface</subject><subject>Implicit surface</subject><subject>Polynomial weighted distribution</subject><issn>0097-8493</issn><issn>1873-7684</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWKs_QdiT6GE1m2w-9iSl-AUFD9Zz2CazNprd1CTb0n_vthWvngaG532ZeRC6LPBtgQt-94ZxJXJZVvQakxuMsRQ5PkKjQgqaCy7LYzT6Q07RWYyfA0QIL0doPulqt01W1y5rIS29iVnjQ7bybtv51g7rDdiPZQKTad-tveuT9V0W-9DUGmK2sWmZretgfR-zLwgduHiOTpraRbj4nWP0_vgwnz7ns9enl-lklmtKZcqpYbrmWjAuOG0MB1oCMG4qSReMLzBnlItCE2lwwwXTzDQghMGkqQyjQOgYXR16V8F_9xCTam3U4FzdwXCOIoJJIcQOZAdQBx9jgEatgm3rsFUFVjuHau9Q7QQpTNTeocJD7v6QG56CtYWgorbQaTA2gE7KePtPww9SEHq2</recordid><startdate>20020601</startdate><enddate>20020601</enddate><creator>Jin, Xiaogang</creator><creator>Tai, Chiew-Lan</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20020601</creationdate><title>Analytical methods for polynomial weighted convolution surfaces with various kernels</title><author>Jin, Xiaogang ; Tai, Chiew-Lan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-3d5ca6c756763fd6e34ee56d983b56b0653671c28d0f675c5dfe77d02f9d53e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Analytical solution</topic><topic>Convolution surface</topic><topic>Implicit surface</topic><topic>Polynomial weighted distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jin, Xiaogang</creatorcontrib><creatorcontrib>Tai, Chiew-Lan</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers & graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jin, Xiaogang</au><au>Tai, Chiew-Lan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analytical methods for polynomial weighted convolution surfaces with various kernels</atitle><jtitle>Computers & graphics</jtitle><date>2002-06-01</date><risdate>2002</risdate><volume>26</volume><issue>3</issue><spage>437</spage><epage>447</epage><pages>437-447</pages><issn>0097-8493</issn><eissn>1873-7684</eissn><abstract>Convolution surface has the advantage of being crease-free and bulge-free over other kinds of implicit surfaces. Among the various types of skeletal elements, line segments can be considered one of the most fundamental as they can approximate curve skeletons. This paper presents analytical solutions for convolving line segments with varying kernels modulated by polynomial weighted functions. We derive the closed-form formulae for most classical kernel functions, namely Gaussian, inverse linear, inverse squared, Cauchy, and quartic functions, and compare their computational complexity. These analytical solutions can be incorporated into existing implicit surface modeling systems for more convenient modeling of generalized cylindrical shapes. We demonstrate their high potentials for modeling and animating branching and tubular organic objects with some examples. We also propose a new competitive kernel function that has a smoothness control parameter.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/S0097-8493(02)00087-0</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0097-8493 |
ispartof | Computers & graphics, 2002-06, Vol.26 (3), p.437-447 |
issn | 0097-8493 1873-7684 |
language | eng |
recordid | cdi_proquest_miscellaneous_27587772 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Analytical solution Convolution surface Implicit surface Polynomial weighted distribution |
title | Analytical methods for polynomial weighted convolution surfaces with various kernels |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T07%3A32%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analytical%20methods%20for%20polynomial%20weighted%20convolution%20surfaces%20with%20various%20kernels&rft.jtitle=Computers%20&%20graphics&rft.au=Jin,%20Xiaogang&rft.date=2002-06-01&rft.volume=26&rft.issue=3&rft.spage=437&rft.epage=447&rft.pages=437-447&rft.issn=0097-8493&rft.eissn=1873-7684&rft_id=info:doi/10.1016/S0097-8493(02)00087-0&rft_dat=%3Cproquest_cross%3E27587772%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27587772&rft_id=info:pmid/&rft_els_id=S0097849302000870&rfr_iscdi=true |