Influence of molybdenum species on growth of anodic titania

TiMo, bcc, solid-solution alloys, containing 11.5–37.0 at.% molybdenum, have been anodised galvanostatically in 0.1 mol dm −3 ammonium pentaborate and 1.0 mol dm −3 phosphoric acid electrolytes, with resultant anodic films characterised by scanning electron microscopy, transmission electron microsc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electrochimica acta 2002-09, Vol.47 (24), p.3837-3845
Hauptverfasser: Habazaki, H., Uozumi, M., Konno, H., Shimizu, K., Nagata, S., Asami, K., Skeldon, P., Thompson, G.E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3845
container_issue 24
container_start_page 3837
container_title Electrochimica acta
container_volume 47
creator Habazaki, H.
Uozumi, M.
Konno, H.
Shimizu, K.
Nagata, S.
Asami, K.
Skeldon, P.
Thompson, G.E.
description TiMo, bcc, solid-solution alloys, containing 11.5–37.0 at.% molybdenum, have been anodised galvanostatically in 0.1 mol dm −3 ammonium pentaborate and 1.0 mol dm −3 phosphoric acid electrolytes, with resultant anodic films characterised by scanning electron microscopy, transmission electron microscopy, Rutherford backscattering spectroscopy and glow discharge optical emission spectroscopy. Uniform amorphous films are formed at high current efficiency to >100 V, with formation ratios of 2.3 and 2.2 nm V −1 in the respective electrolytes, contrasting with the amorphous-to-crystalline transition of anodic titania on titanium that occurs at ∼20–50 V. Apart from minor incorporation of electrolyte species, the films comprise an outer layer of TiO 2 and an inner oxide layer containing Ti 4+ and Mo 6+ ions. The films grow by migration of both cations and anions, with Ti 4+ ions migrating faster than Mo 6+ ions that is related to the energies of Ti 4+O and Mo 6+O bonds.
doi_str_mv 10.1016/S0013-4686(02)00319-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27586330</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0013468602003195</els_id><sourcerecordid>27586330</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-9aa1804dce916d6ea45e66a721ff47882fa31ddc84697671bdc78abf3c4e1ba03</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoMouK7-BKEXRQ_VpGnTFA8iix8LCx7Uc5gmE410mzVplf33truiR09zmOedj4eQY0YvGGXi8olSxtNcSHFGs3NKOavSYodMmCx5ymVR7ZLJL7JPDmJ8p5SWoqQTcjVvbdNjqzHxNln6Zl0bbPtlEleoHcbEt8lr8F_d29iH1hunk8510Do4JHsWmohHP3VKXu5un2cP6eLxfj67WaSaC9mlFQCTNDcaKyaMQMgLFALKjFmbl1JmFjgzRstcVMNRrDa6lFBbrnNkNVA-JafbuavgP3qMnVq6qLFpoEXfR5WVhRScj2CxBXXwMQa0ahXcEsJaMapGVWqjSo0eFM3URpUqhtzJzwKIGhoboNUu_oW5rBgTbOCutxwO3346DCoOjgZ3xgXUnTLe_bPpGz_4fUM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27586330</pqid></control><display><type>article</type><title>Influence of molybdenum species on growth of anodic titania</title><source>Access via ScienceDirect (Elsevier)</source><creator>Habazaki, H. ; Uozumi, M. ; Konno, H. ; Shimizu, K. ; Nagata, S. ; Asami, K. ; Skeldon, P. ; Thompson, G.E.</creator><creatorcontrib>Habazaki, H. ; Uozumi, M. ; Konno, H. ; Shimizu, K. ; Nagata, S. ; Asami, K. ; Skeldon, P. ; Thompson, G.E.</creatorcontrib><description>TiMo, bcc, solid-solution alloys, containing 11.5–37.0 at.% molybdenum, have been anodised galvanostatically in 0.1 mol dm −3 ammonium pentaborate and 1.0 mol dm −3 phosphoric acid electrolytes, with resultant anodic films characterised by scanning electron microscopy, transmission electron microscopy, Rutherford backscattering spectroscopy and glow discharge optical emission spectroscopy. Uniform amorphous films are formed at high current efficiency to &gt;100 V, with formation ratios of 2.3 and 2.2 nm V −1 in the respective electrolytes, contrasting with the amorphous-to-crystalline transition of anodic titania on titanium that occurs at ∼20–50 V. Apart from minor incorporation of electrolyte species, the films comprise an outer layer of TiO 2 and an inner oxide layer containing Ti 4+ and Mo 6+ ions. The films grow by migration of both cations and anions, with Ti 4+ ions migrating faster than Mo 6+ ions that is related to the energies of Ti 4+O and Mo 6+O bonds.</description><identifier>ISSN: 0013-4686</identifier><identifier>EISSN: 1873-3859</identifier><identifier>DOI: 10.1016/S0013-4686(02)00319-5</identifier><identifier>CODEN: ELCAAV</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Anodic films ; Anodising ; Cross-disciplinary physics: materials science; rheology ; Electrodeposition, electroplating ; Exact sciences and technology ; Materials science ; Methods of deposition of films and coatings; film growth and epitaxy ; Physics ; Rutherford backscattering spectroscopy ; Titanium ; Transmission electron microscopy</subject><ispartof>Electrochimica acta, 2002-09, Vol.47 (24), p.3837-3845</ispartof><rights>2002 Elsevier Science Ltd</rights><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-9aa1804dce916d6ea45e66a721ff47882fa31ddc84697671bdc78abf3c4e1ba03</citedby><cites>FETCH-LOGICAL-c368t-9aa1804dce916d6ea45e66a721ff47882fa31ddc84697671bdc78abf3c4e1ba03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0013-4686(02)00319-5$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=13891161$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Habazaki, H.</creatorcontrib><creatorcontrib>Uozumi, M.</creatorcontrib><creatorcontrib>Konno, H.</creatorcontrib><creatorcontrib>Shimizu, K.</creatorcontrib><creatorcontrib>Nagata, S.</creatorcontrib><creatorcontrib>Asami, K.</creatorcontrib><creatorcontrib>Skeldon, P.</creatorcontrib><creatorcontrib>Thompson, G.E.</creatorcontrib><title>Influence of molybdenum species on growth of anodic titania</title><title>Electrochimica acta</title><description>TiMo, bcc, solid-solution alloys, containing 11.5–37.0 at.% molybdenum, have been anodised galvanostatically in 0.1 mol dm −3 ammonium pentaborate and 1.0 mol dm −3 phosphoric acid electrolytes, with resultant anodic films characterised by scanning electron microscopy, transmission electron microscopy, Rutherford backscattering spectroscopy and glow discharge optical emission spectroscopy. Uniform amorphous films are formed at high current efficiency to &gt;100 V, with formation ratios of 2.3 and 2.2 nm V −1 in the respective electrolytes, contrasting with the amorphous-to-crystalline transition of anodic titania on titanium that occurs at ∼20–50 V. Apart from minor incorporation of electrolyte species, the films comprise an outer layer of TiO 2 and an inner oxide layer containing Ti 4+ and Mo 6+ ions. The films grow by migration of both cations and anions, with Ti 4+ ions migrating faster than Mo 6+ ions that is related to the energies of Ti 4+O and Mo 6+O bonds.</description><subject>Anodic films</subject><subject>Anodising</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Electrodeposition, electroplating</subject><subject>Exact sciences and technology</subject><subject>Materials science</subject><subject>Methods of deposition of films and coatings; film growth and epitaxy</subject><subject>Physics</subject><subject>Rutherford backscattering spectroscopy</subject><subject>Titanium</subject><subject>Transmission electron microscopy</subject><issn>0013-4686</issn><issn>1873-3859</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAQhoMouK7-BKEXRQ_VpGnTFA8iix8LCx7Uc5gmE410mzVplf33truiR09zmOedj4eQY0YvGGXi8olSxtNcSHFGs3NKOavSYodMmCx5ymVR7ZLJL7JPDmJ8p5SWoqQTcjVvbdNjqzHxNln6Zl0bbPtlEleoHcbEt8lr8F_d29iH1hunk8510Do4JHsWmohHP3VKXu5un2cP6eLxfj67WaSaC9mlFQCTNDcaKyaMQMgLFALKjFmbl1JmFjgzRstcVMNRrDa6lFBbrnNkNVA-JafbuavgP3qMnVq6qLFpoEXfR5WVhRScj2CxBXXwMQa0ahXcEsJaMapGVWqjSo0eFM3URpUqhtzJzwKIGhoboNUu_oW5rBgTbOCutxwO3346DCoOjgZ3xgXUnTLe_bPpGz_4fUM</recordid><startdate>20020912</startdate><enddate>20020912</enddate><creator>Habazaki, H.</creator><creator>Uozumi, M.</creator><creator>Konno, H.</creator><creator>Shimizu, K.</creator><creator>Nagata, S.</creator><creator>Asami, K.</creator><creator>Skeldon, P.</creator><creator>Thompson, G.E.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20020912</creationdate><title>Influence of molybdenum species on growth of anodic titania</title><author>Habazaki, H. ; Uozumi, M. ; Konno, H. ; Shimizu, K. ; Nagata, S. ; Asami, K. ; Skeldon, P. ; Thompson, G.E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-9aa1804dce916d6ea45e66a721ff47882fa31ddc84697671bdc78abf3c4e1ba03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Anodic films</topic><topic>Anodising</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Electrodeposition, electroplating</topic><topic>Exact sciences and technology</topic><topic>Materials science</topic><topic>Methods of deposition of films and coatings; film growth and epitaxy</topic><topic>Physics</topic><topic>Rutherford backscattering spectroscopy</topic><topic>Titanium</topic><topic>Transmission electron microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Habazaki, H.</creatorcontrib><creatorcontrib>Uozumi, M.</creatorcontrib><creatorcontrib>Konno, H.</creatorcontrib><creatorcontrib>Shimizu, K.</creatorcontrib><creatorcontrib>Nagata, S.</creatorcontrib><creatorcontrib>Asami, K.</creatorcontrib><creatorcontrib>Skeldon, P.</creatorcontrib><creatorcontrib>Thompson, G.E.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Electrochimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Habazaki, H.</au><au>Uozumi, M.</au><au>Konno, H.</au><au>Shimizu, K.</au><au>Nagata, S.</au><au>Asami, K.</au><au>Skeldon, P.</au><au>Thompson, G.E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of molybdenum species on growth of anodic titania</atitle><jtitle>Electrochimica acta</jtitle><date>2002-09-12</date><risdate>2002</risdate><volume>47</volume><issue>24</issue><spage>3837</spage><epage>3845</epage><pages>3837-3845</pages><issn>0013-4686</issn><eissn>1873-3859</eissn><coden>ELCAAV</coden><abstract>TiMo, bcc, solid-solution alloys, containing 11.5–37.0 at.% molybdenum, have been anodised galvanostatically in 0.1 mol dm −3 ammonium pentaborate and 1.0 mol dm −3 phosphoric acid electrolytes, with resultant anodic films characterised by scanning electron microscopy, transmission electron microscopy, Rutherford backscattering spectroscopy and glow discharge optical emission spectroscopy. Uniform amorphous films are formed at high current efficiency to &gt;100 V, with formation ratios of 2.3 and 2.2 nm V −1 in the respective electrolytes, contrasting with the amorphous-to-crystalline transition of anodic titania on titanium that occurs at ∼20–50 V. Apart from minor incorporation of electrolyte species, the films comprise an outer layer of TiO 2 and an inner oxide layer containing Ti 4+ and Mo 6+ ions. The films grow by migration of both cations and anions, with Ti 4+ ions migrating faster than Mo 6+ ions that is related to the energies of Ti 4+O and Mo 6+O bonds.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/S0013-4686(02)00319-5</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0013-4686
ispartof Electrochimica acta, 2002-09, Vol.47 (24), p.3837-3845
issn 0013-4686
1873-3859
language eng
recordid cdi_proquest_miscellaneous_27586330
source Access via ScienceDirect (Elsevier)
subjects Anodic films
Anodising
Cross-disciplinary physics: materials science
rheology
Electrodeposition, electroplating
Exact sciences and technology
Materials science
Methods of deposition of films and coatings
film growth and epitaxy
Physics
Rutherford backscattering spectroscopy
Titanium
Transmission electron microscopy
title Influence of molybdenum species on growth of anodic titania
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T17%3A36%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20molybdenum%20species%20on%20growth%20of%20anodic%20titania&rft.jtitle=Electrochimica%20acta&rft.au=Habazaki,%20H.&rft.date=2002-09-12&rft.volume=47&rft.issue=24&rft.spage=3837&rft.epage=3845&rft.pages=3837-3845&rft.issn=0013-4686&rft.eissn=1873-3859&rft.coden=ELCAAV&rft_id=info:doi/10.1016/S0013-4686(02)00319-5&rft_dat=%3Cproquest_cross%3E27586330%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27586330&rft_id=info:pmid/&rft_els_id=S0013468602003195&rfr_iscdi=true