Influence of manufacturing parameters on the tensile strengths of hollow and solid glass fibres

Composites reinforced with hollow glass fibres (HGF) have been shown to display improved performance in flexural and compressive loading over materials reinforced with solid fibres. A major drawback associated with hollow fibre composites is reduced reinforcement cross-section for a given fibre volu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science 2002-01, Vol.37 (2), p.309-315
Hauptverfasser: HUCKER, M. J, BOND, I. P, HAQ, S, BLEAY, S, FOREMAN, A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 315
container_issue 2
container_start_page 309
container_title Journal of materials science
container_volume 37
creator HUCKER, M. J
BOND, I. P
HAQ, S
BLEAY, S
FOREMAN, A
description Composites reinforced with hollow glass fibres (HGF) have been shown to display improved performance in flexural and compressive loading over materials reinforced with solid fibres. A major drawback associated with hollow fibre composites is reduced reinforcement cross-section for a given fibre volume fraction. It is suggested that the use of optimised manufacturing parameters may allow fibre strengths to be increased, offsetting the inherent strength reduction predicted for hollow fibre composites compared to solid fibre composites. Tensile tests have been performed on batches of hollow and solid fibres with a variety of geometry's to investigate the effects of fibre hollow fraction and manufacturing parameters on fibre strength. Hollow and solid glass fibres drawn under a variety of conditions display tensile strengths which reflect their manufacturing history. A mechanism is proposed whereby differential strains may be locked into the fibre during manufacture. This mechanism may provide an explanation for the strength variations observed. Average tensile strengths for solid and hollow glass fibres appear to increase according to the degree of residual strain differential. The principal manufacturing parameters influencing residual strain differential are draw rate and temperature. Further investigation is suggested into methods for determining heat transport mechanisms within the fibre neck-down zone.
doi_str_mv 10.1023/A:1013648211761
format Article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_27585844</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2428284124</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-876cab96886df60716247c9e14b63ea756f78fd89b7574e0088523082bb7b0433</originalsourceid><addsrcrecordid>eNpdzktLAzEUBeAgCtbq2m1AdDead1J3pfgoFNzoeshkbtopaVKTDOK_t2JXru7mO-dchK4puaeE8Yf5IyWUK2EYpVrREzShUvNGGMJP0YQQxhomFD1HF6VsCSFSMzpB7TL6MEJ0gJPHOxtHb10d8xDXeG-z3UGFXHCKuG4AV4hlCIBLzRDXdVN-Q5sUQvrCNva4pDD0eB1sKdgPXYZyic68DQWujneKPp6f3hevzertZbmYrxrHmayN0crZbqaMUb1XRFPFhHYzoKJTHKyWymvjezPrtNQCCDFGMk4M6zrdEcH5FN399e5z-hyh1HY3FAch2AhpLC3T0kgjxAHe_IPbNOZ4-K1lghlmBGW_6vaobHE2-GyjG0q7z8PO5u-WcmGoPMz-AJqxb98</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2428284124</pqid></control><display><type>article</type><title>Influence of manufacturing parameters on the tensile strengths of hollow and solid glass fibres</title><source>SpringerLink Journals - AutoHoldings</source><creator>HUCKER, M. J ; BOND, I. P ; HAQ, S ; BLEAY, S ; FOREMAN, A</creator><creatorcontrib>HUCKER, M. J ; BOND, I. P ; HAQ, S ; BLEAY, S ; FOREMAN, A</creatorcontrib><description>Composites reinforced with hollow glass fibres (HGF) have been shown to display improved performance in flexural and compressive loading over materials reinforced with solid fibres. A major drawback associated with hollow fibre composites is reduced reinforcement cross-section for a given fibre volume fraction. It is suggested that the use of optimised manufacturing parameters may allow fibre strengths to be increased, offsetting the inherent strength reduction predicted for hollow fibre composites compared to solid fibre composites. Tensile tests have been performed on batches of hollow and solid fibres with a variety of geometry's to investigate the effects of fibre hollow fraction and manufacturing parameters on fibre strength. Hollow and solid glass fibres drawn under a variety of conditions display tensile strengths which reflect their manufacturing history. A mechanism is proposed whereby differential strains may be locked into the fibre during manufacture. This mechanism may provide an explanation for the strength variations observed. Average tensile strengths for solid and hollow glass fibres appear to increase according to the degree of residual strain differential. The principal manufacturing parameters influencing residual strain differential are draw rate and temperature. Further investigation is suggested into methods for determining heat transport mechanisms within the fibre neck-down zone.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1023/A:1013648211761</identifier><identifier>CODEN: JMTSAS</identifier><language>eng</language><publisher>Heidelberg: Springer</publisher><subject>Applied sciences ; Building materials. Ceramics. Glasses ; Chemical industry and chemicals ; Exact sciences and technology ; Fiber composites ; Fiber volume fraction ; Glass fiber reinforced plastics ; Glass fibers ; Glasses ; Manufacturing ; Materials science ; Parameters ; Tensile tests</subject><ispartof>Journal of materials science, 2002-01, Vol.37 (2), p.309-315</ispartof><rights>2002 INIST-CNRS</rights><rights>Kluwer Academic Publishers 2002.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-876cab96886df60716247c9e14b63ea756f78fd89b7574e0088523082bb7b0433</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=13481543$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>HUCKER, M. J</creatorcontrib><creatorcontrib>BOND, I. P</creatorcontrib><creatorcontrib>HAQ, S</creatorcontrib><creatorcontrib>BLEAY, S</creatorcontrib><creatorcontrib>FOREMAN, A</creatorcontrib><title>Influence of manufacturing parameters on the tensile strengths of hollow and solid glass fibres</title><title>Journal of materials science</title><description>Composites reinforced with hollow glass fibres (HGF) have been shown to display improved performance in flexural and compressive loading over materials reinforced with solid fibres. A major drawback associated with hollow fibre composites is reduced reinforcement cross-section for a given fibre volume fraction. It is suggested that the use of optimised manufacturing parameters may allow fibre strengths to be increased, offsetting the inherent strength reduction predicted for hollow fibre composites compared to solid fibre composites. Tensile tests have been performed on batches of hollow and solid fibres with a variety of geometry's to investigate the effects of fibre hollow fraction and manufacturing parameters on fibre strength. Hollow and solid glass fibres drawn under a variety of conditions display tensile strengths which reflect their manufacturing history. A mechanism is proposed whereby differential strains may be locked into the fibre during manufacture. This mechanism may provide an explanation for the strength variations observed. Average tensile strengths for solid and hollow glass fibres appear to increase according to the degree of residual strain differential. The principal manufacturing parameters influencing residual strain differential are draw rate and temperature. Further investigation is suggested into methods for determining heat transport mechanisms within the fibre neck-down zone.</description><subject>Applied sciences</subject><subject>Building materials. Ceramics. Glasses</subject><subject>Chemical industry and chemicals</subject><subject>Exact sciences and technology</subject><subject>Fiber composites</subject><subject>Fiber volume fraction</subject><subject>Glass fiber reinforced plastics</subject><subject>Glass fibers</subject><subject>Glasses</subject><subject>Manufacturing</subject><subject>Materials science</subject><subject>Parameters</subject><subject>Tensile tests</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdzktLAzEUBeAgCtbq2m1AdDead1J3pfgoFNzoeshkbtopaVKTDOK_t2JXru7mO-dchK4puaeE8Yf5IyWUK2EYpVrREzShUvNGGMJP0YQQxhomFD1HF6VsCSFSMzpB7TL6MEJ0gJPHOxtHb10d8xDXeG-z3UGFXHCKuG4AV4hlCIBLzRDXdVN-Q5sUQvrCNva4pDD0eB1sKdgPXYZyic68DQWujneKPp6f3hevzertZbmYrxrHmayN0crZbqaMUb1XRFPFhHYzoKJTHKyWymvjezPrtNQCCDFGMk4M6zrdEcH5FN399e5z-hyh1HY3FAch2AhpLC3T0kgjxAHe_IPbNOZ4-K1lghlmBGW_6vaobHE2-GyjG0q7z8PO5u-WcmGoPMz-AJqxb98</recordid><startdate>20020115</startdate><enddate>20020115</enddate><creator>HUCKER, M. J</creator><creator>BOND, I. P</creator><creator>HAQ, S</creator><creator>BLEAY, S</creator><creator>FOREMAN, A</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7SP</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20020115</creationdate><title>Influence of manufacturing parameters on the tensile strengths of hollow and solid glass fibres</title><author>HUCKER, M. J ; BOND, I. P ; HAQ, S ; BLEAY, S ; FOREMAN, A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-876cab96886df60716247c9e14b63ea756f78fd89b7574e0088523082bb7b0433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Applied sciences</topic><topic>Building materials. Ceramics. Glasses</topic><topic>Chemical industry and chemicals</topic><topic>Exact sciences and technology</topic><topic>Fiber composites</topic><topic>Fiber volume fraction</topic><topic>Glass fiber reinforced plastics</topic><topic>Glass fibers</topic><topic>Glasses</topic><topic>Manufacturing</topic><topic>Materials science</topic><topic>Parameters</topic><topic>Tensile tests</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>HUCKER, M. J</creatorcontrib><creatorcontrib>BOND, I. P</creatorcontrib><creatorcontrib>HAQ, S</creatorcontrib><creatorcontrib>BLEAY, S</creatorcontrib><creatorcontrib>FOREMAN, A</creatorcontrib><collection>Pascal-Francis</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>HUCKER, M. J</au><au>BOND, I. P</au><au>HAQ, S</au><au>BLEAY, S</au><au>FOREMAN, A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of manufacturing parameters on the tensile strengths of hollow and solid glass fibres</atitle><jtitle>Journal of materials science</jtitle><date>2002-01-15</date><risdate>2002</risdate><volume>37</volume><issue>2</issue><spage>309</spage><epage>315</epage><pages>309-315</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><coden>JMTSAS</coden><abstract>Composites reinforced with hollow glass fibres (HGF) have been shown to display improved performance in flexural and compressive loading over materials reinforced with solid fibres. A major drawback associated with hollow fibre composites is reduced reinforcement cross-section for a given fibre volume fraction. It is suggested that the use of optimised manufacturing parameters may allow fibre strengths to be increased, offsetting the inherent strength reduction predicted for hollow fibre composites compared to solid fibre composites. Tensile tests have been performed on batches of hollow and solid fibres with a variety of geometry's to investigate the effects of fibre hollow fraction and manufacturing parameters on fibre strength. Hollow and solid glass fibres drawn under a variety of conditions display tensile strengths which reflect their manufacturing history. A mechanism is proposed whereby differential strains may be locked into the fibre during manufacture. This mechanism may provide an explanation for the strength variations observed. Average tensile strengths for solid and hollow glass fibres appear to increase according to the degree of residual strain differential. The principal manufacturing parameters influencing residual strain differential are draw rate and temperature. Further investigation is suggested into methods for determining heat transport mechanisms within the fibre neck-down zone.</abstract><cop>Heidelberg</cop><pub>Springer</pub><doi>10.1023/A:1013648211761</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2461
ispartof Journal of materials science, 2002-01, Vol.37 (2), p.309-315
issn 0022-2461
1573-4803
language eng
recordid cdi_proquest_miscellaneous_27585844
source SpringerLink Journals - AutoHoldings
subjects Applied sciences
Building materials. Ceramics. Glasses
Chemical industry and chemicals
Exact sciences and technology
Fiber composites
Fiber volume fraction
Glass fiber reinforced plastics
Glass fibers
Glasses
Manufacturing
Materials science
Parameters
Tensile tests
title Influence of manufacturing parameters on the tensile strengths of hollow and solid glass fibres
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T01%3A10%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20manufacturing%20parameters%20on%20the%20tensile%20strengths%20of%20hollow%20and%20solid%20glass%20fibres&rft.jtitle=Journal%20of%20materials%20science&rft.au=HUCKER,%20M.%20J&rft.date=2002-01-15&rft.volume=37&rft.issue=2&rft.spage=309&rft.epage=315&rft.pages=309-315&rft.issn=0022-2461&rft.eissn=1573-4803&rft.coden=JMTSAS&rft_id=info:doi/10.1023/A:1013648211761&rft_dat=%3Cproquest_pasca%3E2428284124%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2428284124&rft_id=info:pmid/&rfr_iscdi=true