Defect-Engineered Cu-Based Nanomaterials for Efficient CO2 Reduction over Ultrawide Potential Window

High conversion efficiency over a wide operating potential window is important for the practical application of CO2 reduction electrocatalysis, yet that remains a huge challenge in differentiating the competing CO2 reduction and H2 evolution. Here we introduce point defects (Sn doping) and planar de...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2023-01, Vol.17 (1), p.402-410
Hauptverfasser: Wu, Qilong, Liu, Chuangwei, Su, Xiaozhi, Yang, Qi, Wu, Xiaotong, Zou, Haiyuan, Long, Baihua, Fan, Xiaokun, Liao, Yujia, Duan, Lele, Quan, Zewei, Luo, Shuiping
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 410
container_issue 1
container_start_page 402
container_title ACS nano
container_volume 17
creator Wu, Qilong
Liu, Chuangwei
Su, Xiaozhi
Yang, Qi
Wu, Xiaotong
Zou, Haiyuan
Long, Baihua
Fan, Xiaokun
Liao, Yujia
Duan, Lele
Quan, Zewei
Luo, Shuiping
description High conversion efficiency over a wide operating potential window is important for the practical application of CO2 reduction electrocatalysis, yet that remains a huge challenge in differentiating the competing CO2 reduction and H2 evolution. Here we introduce point defects (Sn doping) and planar defects (grain boundary) into the Cu substrate. This multidimensional defect integration strategy guides the fabrication of highly diluted SnCu polycrystal, which exhibits high Faradaic efficiencies (>95%) toward CO2 electroreduction over an ultrawide potential window (ΔE = 1.3 V). The theoretical study indicates that the introduction of Sn doping and grain boundary synergistically provides an optimized electronic effect, which helps suppress H2 evolution and promotes the hydrogenation of *CO2.
doi_str_mv 10.1021/acsnano.2c08768
format Article
fullrecord <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_2758577023</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2758577023</sourcerecordid><originalsourceid>FETCH-LOGICAL-a224t-69be8a7c7b7fa01f835bac56e540ba1457e3784d30ccb9466a74d465e5ee1663</originalsourceid><addsrcrecordid>eNo9kE1LAzEURYMoWKtrt1kKMjWZTJLpUsf6AcWKVHQ3ZDIvkjJNNMnYv2_E4urdxbmXx0HonJIZJSW9Ujo65fys1KSWoj5AEzpnoiC1eD_8z5weo5MYN4RwmakJ6m_BgE7Fwn1YBxCgx81Y3KiYw1Oe26oEwaohYuMDXhhjtQWXcLMq8Qv0o07WO-y_IeDXIQW1sz3gZ58yk1v4zbre707RkckTcLa_U7S-W6ybh2K5un9srpeFKssqFWLeQa2klp00ilBTM94pzQXwinSKVlwCk3XVM6J1N6-EULLqK8GBA1Ah2BRd_M1-Bv81Qkzt1kYNw6Ac-DG2peQ1l5KULKOXf2i21m78GFz-q6Wk_VXZ7lW2e5XsB7ZFaW4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2758577023</pqid></control><display><type>article</type><title>Defect-Engineered Cu-Based Nanomaterials for Efficient CO2 Reduction over Ultrawide Potential Window</title><source>American Chemical Society Journals</source><creator>Wu, Qilong ; Liu, Chuangwei ; Su, Xiaozhi ; Yang, Qi ; Wu, Xiaotong ; Zou, Haiyuan ; Long, Baihua ; Fan, Xiaokun ; Liao, Yujia ; Duan, Lele ; Quan, Zewei ; Luo, Shuiping</creator><creatorcontrib>Wu, Qilong ; Liu, Chuangwei ; Su, Xiaozhi ; Yang, Qi ; Wu, Xiaotong ; Zou, Haiyuan ; Long, Baihua ; Fan, Xiaokun ; Liao, Yujia ; Duan, Lele ; Quan, Zewei ; Luo, Shuiping</creatorcontrib><description>High conversion efficiency over a wide operating potential window is important for the practical application of CO2 reduction electrocatalysis, yet that remains a huge challenge in differentiating the competing CO2 reduction and H2 evolution. Here we introduce point defects (Sn doping) and planar defects (grain boundary) into the Cu substrate. This multidimensional defect integration strategy guides the fabrication of highly diluted SnCu polycrystal, which exhibits high Faradaic efficiencies (&gt;95%) toward CO2 electroreduction over an ultrawide potential window (ΔE = 1.3 V). The theoretical study indicates that the introduction of Sn doping and grain boundary synergistically provides an optimized electronic effect, which helps suppress H2 evolution and promotes the hydrogenation of *CO2.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.2c08768</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS nano, 2023-01, Vol.17 (1), p.402-410</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-1998-5527 ; 0000-0002-8584-7782 ; 0000-0003-1662-5817 ; 0000-0001-5756-119X ; 0000-0002-7044-6003</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.2c08768$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.2c08768$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Wu, Qilong</creatorcontrib><creatorcontrib>Liu, Chuangwei</creatorcontrib><creatorcontrib>Su, Xiaozhi</creatorcontrib><creatorcontrib>Yang, Qi</creatorcontrib><creatorcontrib>Wu, Xiaotong</creatorcontrib><creatorcontrib>Zou, Haiyuan</creatorcontrib><creatorcontrib>Long, Baihua</creatorcontrib><creatorcontrib>Fan, Xiaokun</creatorcontrib><creatorcontrib>Liao, Yujia</creatorcontrib><creatorcontrib>Duan, Lele</creatorcontrib><creatorcontrib>Quan, Zewei</creatorcontrib><creatorcontrib>Luo, Shuiping</creatorcontrib><title>Defect-Engineered Cu-Based Nanomaterials for Efficient CO2 Reduction over Ultrawide Potential Window</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>High conversion efficiency over a wide operating potential window is important for the practical application of CO2 reduction electrocatalysis, yet that remains a huge challenge in differentiating the competing CO2 reduction and H2 evolution. Here we introduce point defects (Sn doping) and planar defects (grain boundary) into the Cu substrate. This multidimensional defect integration strategy guides the fabrication of highly diluted SnCu polycrystal, which exhibits high Faradaic efficiencies (&gt;95%) toward CO2 electroreduction over an ultrawide potential window (ΔE = 1.3 V). The theoretical study indicates that the introduction of Sn doping and grain boundary synergistically provides an optimized electronic effect, which helps suppress H2 evolution and promotes the hydrogenation of *CO2.</description><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEURYMoWKtrt1kKMjWZTJLpUsf6AcWKVHQ3ZDIvkjJNNMnYv2_E4urdxbmXx0HonJIZJSW9Ujo65fys1KSWoj5AEzpnoiC1eD_8z5weo5MYN4RwmakJ6m_BgE7Fwn1YBxCgx81Y3KiYw1Oe26oEwaohYuMDXhhjtQWXcLMq8Qv0o07WO-y_IeDXIQW1sz3gZ58yk1v4zbre707RkckTcLa_U7S-W6ybh2K5un9srpeFKssqFWLeQa2klp00ilBTM94pzQXwinSKVlwCk3XVM6J1N6-EULLqK8GBA1Ah2BRd_M1-Bv81Qkzt1kYNw6Ac-DG2peQ1l5KULKOXf2i21m78GFz-q6Wk_VXZ7lW2e5XsB7ZFaW4</recordid><startdate>20230110</startdate><enddate>20230110</enddate><creator>Wu, Qilong</creator><creator>Liu, Chuangwei</creator><creator>Su, Xiaozhi</creator><creator>Yang, Qi</creator><creator>Wu, Xiaotong</creator><creator>Zou, Haiyuan</creator><creator>Long, Baihua</creator><creator>Fan, Xiaokun</creator><creator>Liao, Yujia</creator><creator>Duan, Lele</creator><creator>Quan, Zewei</creator><creator>Luo, Shuiping</creator><general>American Chemical Society</general><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1998-5527</orcidid><orcidid>https://orcid.org/0000-0002-8584-7782</orcidid><orcidid>https://orcid.org/0000-0003-1662-5817</orcidid><orcidid>https://orcid.org/0000-0001-5756-119X</orcidid><orcidid>https://orcid.org/0000-0002-7044-6003</orcidid></search><sort><creationdate>20230110</creationdate><title>Defect-Engineered Cu-Based Nanomaterials for Efficient CO2 Reduction over Ultrawide Potential Window</title><author>Wu, Qilong ; Liu, Chuangwei ; Su, Xiaozhi ; Yang, Qi ; Wu, Xiaotong ; Zou, Haiyuan ; Long, Baihua ; Fan, Xiaokun ; Liao, Yujia ; Duan, Lele ; Quan, Zewei ; Luo, Shuiping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a224t-69be8a7c7b7fa01f835bac56e540ba1457e3784d30ccb9466a74d465e5ee1663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Qilong</creatorcontrib><creatorcontrib>Liu, Chuangwei</creatorcontrib><creatorcontrib>Su, Xiaozhi</creatorcontrib><creatorcontrib>Yang, Qi</creatorcontrib><creatorcontrib>Wu, Xiaotong</creatorcontrib><creatorcontrib>Zou, Haiyuan</creatorcontrib><creatorcontrib>Long, Baihua</creatorcontrib><creatorcontrib>Fan, Xiaokun</creatorcontrib><creatorcontrib>Liao, Yujia</creatorcontrib><creatorcontrib>Duan, Lele</creatorcontrib><creatorcontrib>Quan, Zewei</creatorcontrib><creatorcontrib>Luo, Shuiping</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Qilong</au><au>Liu, Chuangwei</au><au>Su, Xiaozhi</au><au>Yang, Qi</au><au>Wu, Xiaotong</au><au>Zou, Haiyuan</au><au>Long, Baihua</au><au>Fan, Xiaokun</au><au>Liao, Yujia</au><au>Duan, Lele</au><au>Quan, Zewei</au><au>Luo, Shuiping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Defect-Engineered Cu-Based Nanomaterials for Efficient CO2 Reduction over Ultrawide Potential Window</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2023-01-10</date><risdate>2023</risdate><volume>17</volume><issue>1</issue><spage>402</spage><epage>410</epage><pages>402-410</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>High conversion efficiency over a wide operating potential window is important for the practical application of CO2 reduction electrocatalysis, yet that remains a huge challenge in differentiating the competing CO2 reduction and H2 evolution. Here we introduce point defects (Sn doping) and planar defects (grain boundary) into the Cu substrate. This multidimensional defect integration strategy guides the fabrication of highly diluted SnCu polycrystal, which exhibits high Faradaic efficiencies (&gt;95%) toward CO2 electroreduction over an ultrawide potential window (ΔE = 1.3 V). The theoretical study indicates that the introduction of Sn doping and grain boundary synergistically provides an optimized electronic effect, which helps suppress H2 evolution and promotes the hydrogenation of *CO2.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsnano.2c08768</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-1998-5527</orcidid><orcidid>https://orcid.org/0000-0002-8584-7782</orcidid><orcidid>https://orcid.org/0000-0003-1662-5817</orcidid><orcidid>https://orcid.org/0000-0001-5756-119X</orcidid><orcidid>https://orcid.org/0000-0002-7044-6003</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2023-01, Vol.17 (1), p.402-410
issn 1936-0851
1936-086X
language eng
recordid cdi_proquest_miscellaneous_2758577023
source American Chemical Society Journals
title Defect-Engineered Cu-Based Nanomaterials for Efficient CO2 Reduction over Ultrawide Potential Window
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T15%3A50%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Defect-Engineered%20Cu-Based%20Nanomaterials%20for%20Efficient%20CO2%20Reduction%20over%20Ultrawide%20Potential%20Window&rft.jtitle=ACS%20nano&rft.au=Wu,%20Qilong&rft.date=2023-01-10&rft.volume=17&rft.issue=1&rft.spage=402&rft.epage=410&rft.pages=402-410&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.2c08768&rft_dat=%3Cproquest_acs_j%3E2758577023%3C/proquest_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2758577023&rft_id=info:pmid/&rfr_iscdi=true