Defect-Engineered Cu-Based Nanomaterials for Efficient CO2 Reduction over Ultrawide Potential Window
High conversion efficiency over a wide operating potential window is important for the practical application of CO2 reduction electrocatalysis, yet that remains a huge challenge in differentiating the competing CO2 reduction and H2 evolution. Here we introduce point defects (Sn doping) and planar de...
Gespeichert in:
Veröffentlicht in: | ACS nano 2023-01, Vol.17 (1), p.402-410 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 410 |
---|---|
container_issue | 1 |
container_start_page | 402 |
container_title | ACS nano |
container_volume | 17 |
creator | Wu, Qilong Liu, Chuangwei Su, Xiaozhi Yang, Qi Wu, Xiaotong Zou, Haiyuan Long, Baihua Fan, Xiaokun Liao, Yujia Duan, Lele Quan, Zewei Luo, Shuiping |
description | High conversion efficiency over a wide operating potential window is important for the practical application of CO2 reduction electrocatalysis, yet that remains a huge challenge in differentiating the competing CO2 reduction and H2 evolution. Here we introduce point defects (Sn doping) and planar defects (grain boundary) into the Cu substrate. This multidimensional defect integration strategy guides the fabrication of highly diluted SnCu polycrystal, which exhibits high Faradaic efficiencies (>95%) toward CO2 electroreduction over an ultrawide potential window (ΔE = 1.3 V). The theoretical study indicates that the introduction of Sn doping and grain boundary synergistically provides an optimized electronic effect, which helps suppress H2 evolution and promotes the hydrogenation of *CO2. |
doi_str_mv | 10.1021/acsnano.2c08768 |
format | Article |
fullrecord | <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_2758577023</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2758577023</sourcerecordid><originalsourceid>FETCH-LOGICAL-a224t-69be8a7c7b7fa01f835bac56e540ba1457e3784d30ccb9466a74d465e5ee1663</originalsourceid><addsrcrecordid>eNo9kE1LAzEURYMoWKtrt1kKMjWZTJLpUsf6AcWKVHQ3ZDIvkjJNNMnYv2_E4urdxbmXx0HonJIZJSW9Ujo65fys1KSWoj5AEzpnoiC1eD_8z5weo5MYN4RwmakJ6m_BgE7Fwn1YBxCgx81Y3KiYw1Oe26oEwaohYuMDXhhjtQWXcLMq8Qv0o07WO-y_IeDXIQW1sz3gZ58yk1v4zbre707RkckTcLa_U7S-W6ybh2K5un9srpeFKssqFWLeQa2klp00ilBTM94pzQXwinSKVlwCk3XVM6J1N6-EULLqK8GBA1Ah2BRd_M1-Bv81Qkzt1kYNw6Ac-DG2peQ1l5KULKOXf2i21m78GFz-q6Wk_VXZ7lW2e5XsB7ZFaW4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2758577023</pqid></control><display><type>article</type><title>Defect-Engineered Cu-Based Nanomaterials for Efficient CO2 Reduction over Ultrawide Potential Window</title><source>American Chemical Society Journals</source><creator>Wu, Qilong ; Liu, Chuangwei ; Su, Xiaozhi ; Yang, Qi ; Wu, Xiaotong ; Zou, Haiyuan ; Long, Baihua ; Fan, Xiaokun ; Liao, Yujia ; Duan, Lele ; Quan, Zewei ; Luo, Shuiping</creator><creatorcontrib>Wu, Qilong ; Liu, Chuangwei ; Su, Xiaozhi ; Yang, Qi ; Wu, Xiaotong ; Zou, Haiyuan ; Long, Baihua ; Fan, Xiaokun ; Liao, Yujia ; Duan, Lele ; Quan, Zewei ; Luo, Shuiping</creatorcontrib><description>High conversion efficiency over a wide operating potential window is important for the practical application of CO2 reduction electrocatalysis, yet that remains a huge challenge in differentiating the competing CO2 reduction and H2 evolution. Here we introduce point defects (Sn doping) and planar defects (grain boundary) into the Cu substrate. This multidimensional defect integration strategy guides the fabrication of highly diluted SnCu polycrystal, which exhibits high Faradaic efficiencies (>95%) toward CO2 electroreduction over an ultrawide potential window (ΔE = 1.3 V). The theoretical study indicates that the introduction of Sn doping and grain boundary synergistically provides an optimized electronic effect, which helps suppress H2 evolution and promotes the hydrogenation of *CO2.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.2c08768</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS nano, 2023-01, Vol.17 (1), p.402-410</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-1998-5527 ; 0000-0002-8584-7782 ; 0000-0003-1662-5817 ; 0000-0001-5756-119X ; 0000-0002-7044-6003</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.2c08768$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.2c08768$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Wu, Qilong</creatorcontrib><creatorcontrib>Liu, Chuangwei</creatorcontrib><creatorcontrib>Su, Xiaozhi</creatorcontrib><creatorcontrib>Yang, Qi</creatorcontrib><creatorcontrib>Wu, Xiaotong</creatorcontrib><creatorcontrib>Zou, Haiyuan</creatorcontrib><creatorcontrib>Long, Baihua</creatorcontrib><creatorcontrib>Fan, Xiaokun</creatorcontrib><creatorcontrib>Liao, Yujia</creatorcontrib><creatorcontrib>Duan, Lele</creatorcontrib><creatorcontrib>Quan, Zewei</creatorcontrib><creatorcontrib>Luo, Shuiping</creatorcontrib><title>Defect-Engineered Cu-Based Nanomaterials for Efficient CO2 Reduction over Ultrawide Potential Window</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>High conversion efficiency over a wide operating potential window is important for the practical application of CO2 reduction electrocatalysis, yet that remains a huge challenge in differentiating the competing CO2 reduction and H2 evolution. Here we introduce point defects (Sn doping) and planar defects (grain boundary) into the Cu substrate. This multidimensional defect integration strategy guides the fabrication of highly diluted SnCu polycrystal, which exhibits high Faradaic efficiencies (>95%) toward CO2 electroreduction over an ultrawide potential window (ΔE = 1.3 V). The theoretical study indicates that the introduction of Sn doping and grain boundary synergistically provides an optimized electronic effect, which helps suppress H2 evolution and promotes the hydrogenation of *CO2.</description><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEURYMoWKtrt1kKMjWZTJLpUsf6AcWKVHQ3ZDIvkjJNNMnYv2_E4urdxbmXx0HonJIZJSW9Ujo65fys1KSWoj5AEzpnoiC1eD_8z5weo5MYN4RwmakJ6m_BgE7Fwn1YBxCgx81Y3KiYw1Oe26oEwaohYuMDXhhjtQWXcLMq8Qv0o07WO-y_IeDXIQW1sz3gZ58yk1v4zbre707RkckTcLa_U7S-W6ybh2K5un9srpeFKssqFWLeQa2klp00ilBTM94pzQXwinSKVlwCk3XVM6J1N6-EULLqK8GBA1Ah2BRd_M1-Bv81Qkzt1kYNw6Ac-DG2peQ1l5KULKOXf2i21m78GFz-q6Wk_VXZ7lW2e5XsB7ZFaW4</recordid><startdate>20230110</startdate><enddate>20230110</enddate><creator>Wu, Qilong</creator><creator>Liu, Chuangwei</creator><creator>Su, Xiaozhi</creator><creator>Yang, Qi</creator><creator>Wu, Xiaotong</creator><creator>Zou, Haiyuan</creator><creator>Long, Baihua</creator><creator>Fan, Xiaokun</creator><creator>Liao, Yujia</creator><creator>Duan, Lele</creator><creator>Quan, Zewei</creator><creator>Luo, Shuiping</creator><general>American Chemical Society</general><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1998-5527</orcidid><orcidid>https://orcid.org/0000-0002-8584-7782</orcidid><orcidid>https://orcid.org/0000-0003-1662-5817</orcidid><orcidid>https://orcid.org/0000-0001-5756-119X</orcidid><orcidid>https://orcid.org/0000-0002-7044-6003</orcidid></search><sort><creationdate>20230110</creationdate><title>Defect-Engineered Cu-Based Nanomaterials for Efficient CO2 Reduction over Ultrawide Potential Window</title><author>Wu, Qilong ; Liu, Chuangwei ; Su, Xiaozhi ; Yang, Qi ; Wu, Xiaotong ; Zou, Haiyuan ; Long, Baihua ; Fan, Xiaokun ; Liao, Yujia ; Duan, Lele ; Quan, Zewei ; Luo, Shuiping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a224t-69be8a7c7b7fa01f835bac56e540ba1457e3784d30ccb9466a74d465e5ee1663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Qilong</creatorcontrib><creatorcontrib>Liu, Chuangwei</creatorcontrib><creatorcontrib>Su, Xiaozhi</creatorcontrib><creatorcontrib>Yang, Qi</creatorcontrib><creatorcontrib>Wu, Xiaotong</creatorcontrib><creatorcontrib>Zou, Haiyuan</creatorcontrib><creatorcontrib>Long, Baihua</creatorcontrib><creatorcontrib>Fan, Xiaokun</creatorcontrib><creatorcontrib>Liao, Yujia</creatorcontrib><creatorcontrib>Duan, Lele</creatorcontrib><creatorcontrib>Quan, Zewei</creatorcontrib><creatorcontrib>Luo, Shuiping</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Qilong</au><au>Liu, Chuangwei</au><au>Su, Xiaozhi</au><au>Yang, Qi</au><au>Wu, Xiaotong</au><au>Zou, Haiyuan</au><au>Long, Baihua</au><au>Fan, Xiaokun</au><au>Liao, Yujia</au><au>Duan, Lele</au><au>Quan, Zewei</au><au>Luo, Shuiping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Defect-Engineered Cu-Based Nanomaterials for Efficient CO2 Reduction over Ultrawide Potential Window</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2023-01-10</date><risdate>2023</risdate><volume>17</volume><issue>1</issue><spage>402</spage><epage>410</epage><pages>402-410</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>High conversion efficiency over a wide operating potential window is important for the practical application of CO2 reduction electrocatalysis, yet that remains a huge challenge in differentiating the competing CO2 reduction and H2 evolution. Here we introduce point defects (Sn doping) and planar defects (grain boundary) into the Cu substrate. This multidimensional defect integration strategy guides the fabrication of highly diluted SnCu polycrystal, which exhibits high Faradaic efficiencies (>95%) toward CO2 electroreduction over an ultrawide potential window (ΔE = 1.3 V). The theoretical study indicates that the introduction of Sn doping and grain boundary synergistically provides an optimized electronic effect, which helps suppress H2 evolution and promotes the hydrogenation of *CO2.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsnano.2c08768</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-1998-5527</orcidid><orcidid>https://orcid.org/0000-0002-8584-7782</orcidid><orcidid>https://orcid.org/0000-0003-1662-5817</orcidid><orcidid>https://orcid.org/0000-0001-5756-119X</orcidid><orcidid>https://orcid.org/0000-0002-7044-6003</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1936-0851 |
ispartof | ACS nano, 2023-01, Vol.17 (1), p.402-410 |
issn | 1936-0851 1936-086X |
language | eng |
recordid | cdi_proquest_miscellaneous_2758577023 |
source | American Chemical Society Journals |
title | Defect-Engineered Cu-Based Nanomaterials for Efficient CO2 Reduction over Ultrawide Potential Window |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T15%3A50%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Defect-Engineered%20Cu-Based%20Nanomaterials%20for%20Efficient%20CO2%20Reduction%20over%20Ultrawide%20Potential%20Window&rft.jtitle=ACS%20nano&rft.au=Wu,%20Qilong&rft.date=2023-01-10&rft.volume=17&rft.issue=1&rft.spage=402&rft.epage=410&rft.pages=402-410&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.2c08768&rft_dat=%3Cproquest_acs_j%3E2758577023%3C/proquest_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2758577023&rft_id=info:pmid/&rfr_iscdi=true |