Impact of assay stability on the false negative and false positive rates in quality control

•Risk-based methods for QC offer advantages over traditional approaches.•We developed a dynamic model for analysis of risk-based QC.•The dynamic model requires users to estimate input parameters.•The model is sensitive to assumptions regarding the input parameters. The dynamic Precision QC (PQC) mod...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Clinica chimica acta 2023-02, Vol.540, p.117208-117208, Article 117208
Hauptverfasser: Schmidt, Robert L., Walker, Brandon S., Moore, Ryleigh A., Rudolf, Joseph W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 117208
container_issue
container_start_page 117208
container_title Clinica chimica acta
container_volume 540
creator Schmidt, Robert L.
Walker, Brandon S.
Moore, Ryleigh A.
Rudolf, Joseph W.
description •Risk-based methods for QC offer advantages over traditional approaches.•We developed a dynamic model for analysis of risk-based QC.•The dynamic model requires users to estimate input parameters.•The model is sensitive to assumptions regarding the input parameters. The dynamic Precision QC (PQC) model can be used to evaluate the performance of quality control (QC) monitoring systems. The model depends on inputs that describe the intrinsic shift behavior (i.e., stability) of an assay. The output of the model is a trade-off curve that shows the relationship between false negative (FN) and false positive (FP) risk events. The relationship between the inputs and outputs of this model has not yet been explored. We used Monte Carlo simulation to generate trade-off curves using the PQC. We varied the input parameters that determine assay stability (shift probability and shift size distribution) and studied the impact of these inputs on the output (i.e., the trade-off curve relating FN risk to FP risk). FN risk is sensitive to the shift probability and the width of the control limits. FN risk is sensitive to the shape of the shift size distribution when the standard deviation (SD) of the shift size distribution is relatively narrow (i.e., SD  2). Practical use of the PQC model may require the estimation of the shift probability and shift size distribution.
doi_str_mv 10.1016/j.cca.2022.12.020
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2758354912</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S000989812201422X</els_id><sourcerecordid>2758354912</sourcerecordid><originalsourceid>FETCH-LOGICAL-c305t-b85da00df9d7d557aeec1b3ed0776191c0ed97d45e6c939090637bc7a46cc42d3</originalsourceid><addsrcrecordid>eNp9kD1rHDEQhoVJiC92foCboDLNbkbSSlqRKhjbMRjSOJULoZXmbB17q7OkM9y_995HUqYaZnjeF-Yh5IpBy4Cp76vWe9dy4LxlvAUOZ2TBei0a0Rn-gSwAwDS96dk5-VzKal47UOwTORdKKmWkWZCn-_XG-UrTkrpS3I6W6oY4xrqjaaL1BenSjQXphM-uxjekbgqn0yaVeDhlV7HQONHXrTskfZpqTuMl-Xggv5zmBflze_N4_at5-H13f_3zofECZG2GXgYHEJYm6CCldoieDQIDaK2YYR4wGB06icobYcCAEnrw2nXK-44HcUG-HXs3Ob1usVS7jsXjOLoJ07ZYrmUvZGcYn1F2RH1OpWRc2k2Oa5d3loHdO7UrOzu1e6eWcTs7nTNfT_XbYY3hX-KvxBn4cQRwfvItYrbFR5w8hpjRVxtS_E_9O6O9h7g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2758354912</pqid></control><display><type>article</type><title>Impact of assay stability on the false negative and false positive rates in quality control</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Schmidt, Robert L. ; Walker, Brandon S. ; Moore, Ryleigh A. ; Rudolf, Joseph W.</creator><creatorcontrib>Schmidt, Robert L. ; Walker, Brandon S. ; Moore, Ryleigh A. ; Rudolf, Joseph W.</creatorcontrib><description>•Risk-based methods for QC offer advantages over traditional approaches.•We developed a dynamic model for analysis of risk-based QC.•The dynamic model requires users to estimate input parameters.•The model is sensitive to assumptions regarding the input parameters. The dynamic Precision QC (PQC) model can be used to evaluate the performance of quality control (QC) monitoring systems. The model depends on inputs that describe the intrinsic shift behavior (i.e., stability) of an assay. The output of the model is a trade-off curve that shows the relationship between false negative (FN) and false positive (FP) risk events. The relationship between the inputs and outputs of this model has not yet been explored. We used Monte Carlo simulation to generate trade-off curves using the PQC. We varied the input parameters that determine assay stability (shift probability and shift size distribution) and studied the impact of these inputs on the output (i.e., the trade-off curve relating FN risk to FP risk). FN risk is sensitive to the shift probability and the width of the control limits. FN risk is sensitive to the shape of the shift size distribution when the standard deviation (SD) of the shift size distribution is relatively narrow (i.e., SD &lt; 2) but is less sensitive to the width of the shift size distribution when the SD is relatively large (i.e., SD &gt; 2). Practical use of the PQC model may require the estimation of the shift probability and shift size distribution.</description><identifier>ISSN: 0009-8981</identifier><identifier>EISSN: 1873-3492</identifier><identifier>DOI: 10.1016/j.cca.2022.12.020</identifier><identifier>PMID: 36566959</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Analytics ; Biological Assay ; Humans ; Laboratory management ; Quality Control</subject><ispartof>Clinica chimica acta, 2023-02, Vol.540, p.117208-117208, Article 117208</ispartof><rights>2022 Elsevier B.V.</rights><rights>Copyright © 2022 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c305t-b85da00df9d7d557aeec1b3ed0776191c0ed97d45e6c939090637bc7a46cc42d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cca.2022.12.020$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27922,27923,45993</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36566959$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Schmidt, Robert L.</creatorcontrib><creatorcontrib>Walker, Brandon S.</creatorcontrib><creatorcontrib>Moore, Ryleigh A.</creatorcontrib><creatorcontrib>Rudolf, Joseph W.</creatorcontrib><title>Impact of assay stability on the false negative and false positive rates in quality control</title><title>Clinica chimica acta</title><addtitle>Clin Chim Acta</addtitle><description>•Risk-based methods for QC offer advantages over traditional approaches.•We developed a dynamic model for analysis of risk-based QC.•The dynamic model requires users to estimate input parameters.•The model is sensitive to assumptions regarding the input parameters. The dynamic Precision QC (PQC) model can be used to evaluate the performance of quality control (QC) monitoring systems. The model depends on inputs that describe the intrinsic shift behavior (i.e., stability) of an assay. The output of the model is a trade-off curve that shows the relationship between false negative (FN) and false positive (FP) risk events. The relationship between the inputs and outputs of this model has not yet been explored. We used Monte Carlo simulation to generate trade-off curves using the PQC. We varied the input parameters that determine assay stability (shift probability and shift size distribution) and studied the impact of these inputs on the output (i.e., the trade-off curve relating FN risk to FP risk). FN risk is sensitive to the shift probability and the width of the control limits. FN risk is sensitive to the shape of the shift size distribution when the standard deviation (SD) of the shift size distribution is relatively narrow (i.e., SD &lt; 2) but is less sensitive to the width of the shift size distribution when the SD is relatively large (i.e., SD &gt; 2). Practical use of the PQC model may require the estimation of the shift probability and shift size distribution.</description><subject>Analytics</subject><subject>Biological Assay</subject><subject>Humans</subject><subject>Laboratory management</subject><subject>Quality Control</subject><issn>0009-8981</issn><issn>1873-3492</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kD1rHDEQhoVJiC92foCboDLNbkbSSlqRKhjbMRjSOJULoZXmbB17q7OkM9y_995HUqYaZnjeF-Yh5IpBy4Cp76vWe9dy4LxlvAUOZ2TBei0a0Rn-gSwAwDS96dk5-VzKal47UOwTORdKKmWkWZCn-_XG-UrTkrpS3I6W6oY4xrqjaaL1BenSjQXphM-uxjekbgqn0yaVeDhlV7HQONHXrTskfZpqTuMl-Xggv5zmBflze_N4_at5-H13f_3zofECZG2GXgYHEJYm6CCldoieDQIDaK2YYR4wGB06icobYcCAEnrw2nXK-44HcUG-HXs3Ob1usVS7jsXjOLoJ07ZYrmUvZGcYn1F2RH1OpWRc2k2Oa5d3loHdO7UrOzu1e6eWcTs7nTNfT_XbYY3hX-KvxBn4cQRwfvItYrbFR5w8hpjRVxtS_E_9O6O9h7g</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Schmidt, Robert L.</creator><creator>Walker, Brandon S.</creator><creator>Moore, Ryleigh A.</creator><creator>Rudolf, Joseph W.</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20230201</creationdate><title>Impact of assay stability on the false negative and false positive rates in quality control</title><author>Schmidt, Robert L. ; Walker, Brandon S. ; Moore, Ryleigh A. ; Rudolf, Joseph W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c305t-b85da00df9d7d557aeec1b3ed0776191c0ed97d45e6c939090637bc7a46cc42d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analytics</topic><topic>Biological Assay</topic><topic>Humans</topic><topic>Laboratory management</topic><topic>Quality Control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schmidt, Robert L.</creatorcontrib><creatorcontrib>Walker, Brandon S.</creatorcontrib><creatorcontrib>Moore, Ryleigh A.</creatorcontrib><creatorcontrib>Rudolf, Joseph W.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Clinica chimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schmidt, Robert L.</au><au>Walker, Brandon S.</au><au>Moore, Ryleigh A.</au><au>Rudolf, Joseph W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impact of assay stability on the false negative and false positive rates in quality control</atitle><jtitle>Clinica chimica acta</jtitle><addtitle>Clin Chim Acta</addtitle><date>2023-02-01</date><risdate>2023</risdate><volume>540</volume><spage>117208</spage><epage>117208</epage><pages>117208-117208</pages><artnum>117208</artnum><issn>0009-8981</issn><eissn>1873-3492</eissn><abstract>•Risk-based methods for QC offer advantages over traditional approaches.•We developed a dynamic model for analysis of risk-based QC.•The dynamic model requires users to estimate input parameters.•The model is sensitive to assumptions regarding the input parameters. The dynamic Precision QC (PQC) model can be used to evaluate the performance of quality control (QC) monitoring systems. The model depends on inputs that describe the intrinsic shift behavior (i.e., stability) of an assay. The output of the model is a trade-off curve that shows the relationship between false negative (FN) and false positive (FP) risk events. The relationship between the inputs and outputs of this model has not yet been explored. We used Monte Carlo simulation to generate trade-off curves using the PQC. We varied the input parameters that determine assay stability (shift probability and shift size distribution) and studied the impact of these inputs on the output (i.e., the trade-off curve relating FN risk to FP risk). FN risk is sensitive to the shift probability and the width of the control limits. FN risk is sensitive to the shape of the shift size distribution when the standard deviation (SD) of the shift size distribution is relatively narrow (i.e., SD &lt; 2) but is less sensitive to the width of the shift size distribution when the SD is relatively large (i.e., SD &gt; 2). Practical use of the PQC model may require the estimation of the shift probability and shift size distribution.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>36566959</pmid><doi>10.1016/j.cca.2022.12.020</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0009-8981
ispartof Clinica chimica acta, 2023-02, Vol.540, p.117208-117208, Article 117208
issn 0009-8981
1873-3492
language eng
recordid cdi_proquest_miscellaneous_2758354912
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Analytics
Biological Assay
Humans
Laboratory management
Quality Control
title Impact of assay stability on the false negative and false positive rates in quality control
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T15%3A39%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impact%20of%20assay%20stability%20on%20the%20false%20negative%20and%20false%20positive%20rates%20in%20quality%20control&rft.jtitle=Clinica%20chimica%20acta&rft.au=Schmidt,%20Robert%20L.&rft.date=2023-02-01&rft.volume=540&rft.spage=117208&rft.epage=117208&rft.pages=117208-117208&rft.artnum=117208&rft.issn=0009-8981&rft.eissn=1873-3492&rft_id=info:doi/10.1016/j.cca.2022.12.020&rft_dat=%3Cproquest_cross%3E2758354912%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2758354912&rft_id=info:pmid/36566959&rft_els_id=S000989812201422X&rfr_iscdi=true