On configurational forces in the context of the finite element method
The theory of configurational forces is briefly recast, together with the underlying balance laws. It is shown, that in the case of a homogeneous body without body forces the additional balance laws are identically satisfied if the standard force balance holds. In approximate solutions, for example...
Gespeichert in:
Veröffentlicht in: | International journal for numerical methods in engineering 2002-03, Vol.53 (7), p.1557-1574 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1574 |
---|---|
container_issue | 7 |
container_start_page | 1557 |
container_title | International journal for numerical methods in engineering |
container_volume | 53 |
creator | Mueller, R. Kolling, S. Gross, D. |
description | The theory of configurational forces is briefly recast, together with the underlying balance laws. It is shown, that in the case of a homogeneous body without body forces the additional balance laws are identically satisfied if the standard force balance holds. In approximate solutions, for example obtained by finite elements, the equilibrium is not satisfied exactly, thus configurational forces occur on discretization nodes. An implementation of the configurational force balance into the finite element scheme is presented. The use of configurational forces is discussed with three main aspects. It is demonstrated how configurational forces can be used to check and to improve the finite element solution. Examples from fracture mechanics and problems with material inhomogeneities are discussed. Copyright © 2001 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/nme.351 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27581253</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>27581253</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3281-34db142e79d3dadca1ec6882b445098d2658c6f6b02980ac74677028eb094ef33</originalsourceid><addsrcrecordid>eNp10M9LwzAUB_AgCs4p_gs96UE686Np0qPMOZW5XZSBl5ClLy7aNpp06P57OyvePD0e3w-PxxehU4JHBGN62dQwYpzsoQHBhUgxxWIfDbqkSHkhySE6ivEVY0I4ZgM0WTSJ8Y11L5ugW-cbXSXWBwMxcU3SrmGXtvDVJt7-rNY1roUEKqihaZMa2rUvj9GB1VWEk985RE83k8fxbTpbTO_GV7PUMCpJyrJyRTIKoihZqUujCZhcSrrKMo4LWdKcS5PbfNU9K7E2IsuFwFTCChcZWMaG6Ky_-x78xwZiq2oXDVSVbsBvoqKCS0L5Dp730AQfYwCr3oOrddgqgtWuJtXVpLqaOnnRy09XwfY_puYPk16nvXaxK-VP6_CmcsEEV8v5VI05L56z5b26Zt_sana0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27581253</pqid></control><display><type>article</type><title>On configurational forces in the context of the finite element method</title><source>Wiley Online Library All Journals</source><creator>Mueller, R. ; Kolling, S. ; Gross, D.</creator><creatorcontrib>Mueller, R. ; Kolling, S. ; Gross, D.</creatorcontrib><description>The theory of configurational forces is briefly recast, together with the underlying balance laws. It is shown, that in the case of a homogeneous body without body forces the additional balance laws are identically satisfied if the standard force balance holds. In approximate solutions, for example obtained by finite elements, the equilibrium is not satisfied exactly, thus configurational forces occur on discretization nodes. An implementation of the configurational force balance into the finite element scheme is presented. The use of configurational forces is discussed with three main aspects. It is demonstrated how configurational forces can be used to check and to improve the finite element solution. Examples from fracture mechanics and problems with material inhomogeneities are discussed. Copyright © 2001 John Wiley & Sons, Ltd.</description><identifier>ISSN: 0029-5981</identifier><identifier>EISSN: 1097-0207</identifier><identifier>DOI: 10.1002/nme.351</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>configurational forces ; energy-momentum tensor (Eshelby) ; finite elements ; inhomogeneity ; J-integral ; material forces</subject><ispartof>International journal for numerical methods in engineering, 2002-03, Vol.53 (7), p.1557-1574</ispartof><rights>Copyright © 2001 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3281-34db142e79d3dadca1ec6882b445098d2658c6f6b02980ac74677028eb094ef33</citedby><cites>FETCH-LOGICAL-c3281-34db142e79d3dadca1ec6882b445098d2658c6f6b02980ac74677028eb094ef33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnme.351$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnme.351$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Mueller, R.</creatorcontrib><creatorcontrib>Kolling, S.</creatorcontrib><creatorcontrib>Gross, D.</creatorcontrib><title>On configurational forces in the context of the finite element method</title><title>International journal for numerical methods in engineering</title><addtitle>Int. J. Numer. Meth. Engng</addtitle><description>The theory of configurational forces is briefly recast, together with the underlying balance laws. It is shown, that in the case of a homogeneous body without body forces the additional balance laws are identically satisfied if the standard force balance holds. In approximate solutions, for example obtained by finite elements, the equilibrium is not satisfied exactly, thus configurational forces occur on discretization nodes. An implementation of the configurational force balance into the finite element scheme is presented. The use of configurational forces is discussed with three main aspects. It is demonstrated how configurational forces can be used to check and to improve the finite element solution. Examples from fracture mechanics and problems with material inhomogeneities are discussed. Copyright © 2001 John Wiley & Sons, Ltd.</description><subject>configurational forces</subject><subject>energy-momentum tensor (Eshelby)</subject><subject>finite elements</subject><subject>inhomogeneity</subject><subject>J-integral</subject><subject>material forces</subject><issn>0029-5981</issn><issn>1097-0207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNp10M9LwzAUB_AgCs4p_gs96UE686Np0qPMOZW5XZSBl5ClLy7aNpp06P57OyvePD0e3w-PxxehU4JHBGN62dQwYpzsoQHBhUgxxWIfDbqkSHkhySE6ivEVY0I4ZgM0WTSJ8Y11L5ugW-cbXSXWBwMxcU3SrmGXtvDVJt7-rNY1roUEKqihaZMa2rUvj9GB1VWEk985RE83k8fxbTpbTO_GV7PUMCpJyrJyRTIKoihZqUujCZhcSrrKMo4LWdKcS5PbfNU9K7E2IsuFwFTCChcZWMaG6Ky_-x78xwZiq2oXDVSVbsBvoqKCS0L5Dp730AQfYwCr3oOrddgqgtWuJtXVpLqaOnnRy09XwfY_puYPk16nvXaxK-VP6_CmcsEEV8v5VI05L56z5b26Zt_sana0</recordid><startdate>20020310</startdate><enddate>20020310</enddate><creator>Mueller, R.</creator><creator>Kolling, S.</creator><creator>Gross, D.</creator><general>John Wiley & Sons, Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SM</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20020310</creationdate><title>On configurational forces in the context of the finite element method</title><author>Mueller, R. ; Kolling, S. ; Gross, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3281-34db142e79d3dadca1ec6882b445098d2658c6f6b02980ac74677028eb094ef33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>configurational forces</topic><topic>energy-momentum tensor (Eshelby)</topic><topic>finite elements</topic><topic>inhomogeneity</topic><topic>J-integral</topic><topic>material forces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mueller, R.</creatorcontrib><creatorcontrib>Kolling, S.</creatorcontrib><creatorcontrib>Gross, D.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Earthquake Engineering Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal for numerical methods in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mueller, R.</au><au>Kolling, S.</au><au>Gross, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On configurational forces in the context of the finite element method</atitle><jtitle>International journal for numerical methods in engineering</jtitle><addtitle>Int. J. Numer. Meth. Engng</addtitle><date>2002-03-10</date><risdate>2002</risdate><volume>53</volume><issue>7</issue><spage>1557</spage><epage>1574</epage><pages>1557-1574</pages><issn>0029-5981</issn><eissn>1097-0207</eissn><abstract>The theory of configurational forces is briefly recast, together with the underlying balance laws. It is shown, that in the case of a homogeneous body without body forces the additional balance laws are identically satisfied if the standard force balance holds. In approximate solutions, for example obtained by finite elements, the equilibrium is not satisfied exactly, thus configurational forces occur on discretization nodes. An implementation of the configurational force balance into the finite element scheme is presented. The use of configurational forces is discussed with three main aspects. It is demonstrated how configurational forces can be used to check and to improve the finite element solution. Examples from fracture mechanics and problems with material inhomogeneities are discussed. Copyright © 2001 John Wiley & Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><doi>10.1002/nme.351</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0029-5981 |
ispartof | International journal for numerical methods in engineering, 2002-03, Vol.53 (7), p.1557-1574 |
issn | 0029-5981 1097-0207 |
language | eng |
recordid | cdi_proquest_miscellaneous_27581253 |
source | Wiley Online Library All Journals |
subjects | configurational forces energy-momentum tensor (Eshelby) finite elements inhomogeneity J-integral material forces |
title | On configurational forces in the context of the finite element method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T14%3A58%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20configurational%20forces%20in%20the%20context%20of%20the%20finite%20element%20method&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20engineering&rft.au=Mueller,%20R.&rft.date=2002-03-10&rft.volume=53&rft.issue=7&rft.spage=1557&rft.epage=1574&rft.pages=1557-1574&rft.issn=0029-5981&rft.eissn=1097-0207&rft_id=info:doi/10.1002/nme.351&rft_dat=%3Cproquest_cross%3E27581253%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27581253&rft_id=info:pmid/&rfr_iscdi=true |