On configurational forces in the context of the finite element method

The theory of configurational forces is briefly recast, together with the underlying balance laws. It is shown, that in the case of a homogeneous body without body forces the additional balance laws are identically satisfied if the standard force balance holds. In approximate solutions, for example...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal for numerical methods in engineering 2002-03, Vol.53 (7), p.1557-1574
Hauptverfasser: Mueller, R., Kolling, S., Gross, D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1574
container_issue 7
container_start_page 1557
container_title International journal for numerical methods in engineering
container_volume 53
creator Mueller, R.
Kolling, S.
Gross, D.
description The theory of configurational forces is briefly recast, together with the underlying balance laws. It is shown, that in the case of a homogeneous body without body forces the additional balance laws are identically satisfied if the standard force balance holds. In approximate solutions, for example obtained by finite elements, the equilibrium is not satisfied exactly, thus configurational forces occur on discretization nodes. An implementation of the configurational force balance into the finite element scheme is presented. The use of configurational forces is discussed with three main aspects. It is demonstrated how configurational forces can be used to check and to improve the finite element solution. Examples from fracture mechanics and problems with material inhomogeneities are discussed. Copyright © 2001 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/nme.351
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27581253</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>27581253</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3281-34db142e79d3dadca1ec6882b445098d2658c6f6b02980ac74677028eb094ef33</originalsourceid><addsrcrecordid>eNp10M9LwzAUB_AgCs4p_gs96UE686Np0qPMOZW5XZSBl5ClLy7aNpp06P57OyvePD0e3w-PxxehU4JHBGN62dQwYpzsoQHBhUgxxWIfDbqkSHkhySE6ivEVY0I4ZgM0WTSJ8Y11L5ugW-cbXSXWBwMxcU3SrmGXtvDVJt7-rNY1roUEKqihaZMa2rUvj9GB1VWEk985RE83k8fxbTpbTO_GV7PUMCpJyrJyRTIKoihZqUujCZhcSrrKMo4LWdKcS5PbfNU9K7E2IsuFwFTCChcZWMaG6Ky_-x78xwZiq2oXDVSVbsBvoqKCS0L5Dp730AQfYwCr3oOrddgqgtWuJtXVpLqaOnnRy09XwfY_puYPk16nvXaxK-VP6_CmcsEEV8v5VI05L56z5b26Zt_sana0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27581253</pqid></control><display><type>article</type><title>On configurational forces in the context of the finite element method</title><source>Wiley Online Library All Journals</source><creator>Mueller, R. ; Kolling, S. ; Gross, D.</creator><creatorcontrib>Mueller, R. ; Kolling, S. ; Gross, D.</creatorcontrib><description>The theory of configurational forces is briefly recast, together with the underlying balance laws. It is shown, that in the case of a homogeneous body without body forces the additional balance laws are identically satisfied if the standard force balance holds. In approximate solutions, for example obtained by finite elements, the equilibrium is not satisfied exactly, thus configurational forces occur on discretization nodes. An implementation of the configurational force balance into the finite element scheme is presented. The use of configurational forces is discussed with three main aspects. It is demonstrated how configurational forces can be used to check and to improve the finite element solution. Examples from fracture mechanics and problems with material inhomogeneities are discussed. Copyright © 2001 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0029-5981</identifier><identifier>EISSN: 1097-0207</identifier><identifier>DOI: 10.1002/nme.351</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>configurational forces ; energy-momentum tensor (Eshelby) ; finite elements ; inhomogeneity ; J-integral ; material forces</subject><ispartof>International journal for numerical methods in engineering, 2002-03, Vol.53 (7), p.1557-1574</ispartof><rights>Copyright © 2001 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3281-34db142e79d3dadca1ec6882b445098d2658c6f6b02980ac74677028eb094ef33</citedby><cites>FETCH-LOGICAL-c3281-34db142e79d3dadca1ec6882b445098d2658c6f6b02980ac74677028eb094ef33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnme.351$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnme.351$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Mueller, R.</creatorcontrib><creatorcontrib>Kolling, S.</creatorcontrib><creatorcontrib>Gross, D.</creatorcontrib><title>On configurational forces in the context of the finite element method</title><title>International journal for numerical methods in engineering</title><addtitle>Int. J. Numer. Meth. Engng</addtitle><description>The theory of configurational forces is briefly recast, together with the underlying balance laws. It is shown, that in the case of a homogeneous body without body forces the additional balance laws are identically satisfied if the standard force balance holds. In approximate solutions, for example obtained by finite elements, the equilibrium is not satisfied exactly, thus configurational forces occur on discretization nodes. An implementation of the configurational force balance into the finite element scheme is presented. The use of configurational forces is discussed with three main aspects. It is demonstrated how configurational forces can be used to check and to improve the finite element solution. Examples from fracture mechanics and problems with material inhomogeneities are discussed. Copyright © 2001 John Wiley &amp; Sons, Ltd.</description><subject>configurational forces</subject><subject>energy-momentum tensor (Eshelby)</subject><subject>finite elements</subject><subject>inhomogeneity</subject><subject>J-integral</subject><subject>material forces</subject><issn>0029-5981</issn><issn>1097-0207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNp10M9LwzAUB_AgCs4p_gs96UE686Np0qPMOZW5XZSBl5ClLy7aNpp06P57OyvePD0e3w-PxxehU4JHBGN62dQwYpzsoQHBhUgxxWIfDbqkSHkhySE6ivEVY0I4ZgM0WTSJ8Y11L5ugW-cbXSXWBwMxcU3SrmGXtvDVJt7-rNY1roUEKqihaZMa2rUvj9GB1VWEk985RE83k8fxbTpbTO_GV7PUMCpJyrJyRTIKoihZqUujCZhcSrrKMo4LWdKcS5PbfNU9K7E2IsuFwFTCChcZWMaG6Ky_-x78xwZiq2oXDVSVbsBvoqKCS0L5Dp730AQfYwCr3oOrddgqgtWuJtXVpLqaOnnRy09XwfY_puYPk16nvXaxK-VP6_CmcsEEV8v5VI05L56z5b26Zt_sana0</recordid><startdate>20020310</startdate><enddate>20020310</enddate><creator>Mueller, R.</creator><creator>Kolling, S.</creator><creator>Gross, D.</creator><general>John Wiley &amp; Sons, Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SM</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20020310</creationdate><title>On configurational forces in the context of the finite element method</title><author>Mueller, R. ; Kolling, S. ; Gross, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3281-34db142e79d3dadca1ec6882b445098d2658c6f6b02980ac74677028eb094ef33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>configurational forces</topic><topic>energy-momentum tensor (Eshelby)</topic><topic>finite elements</topic><topic>inhomogeneity</topic><topic>J-integral</topic><topic>material forces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mueller, R.</creatorcontrib><creatorcontrib>Kolling, S.</creatorcontrib><creatorcontrib>Gross, D.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Earthquake Engineering Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal for numerical methods in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mueller, R.</au><au>Kolling, S.</au><au>Gross, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On configurational forces in the context of the finite element method</atitle><jtitle>International journal for numerical methods in engineering</jtitle><addtitle>Int. J. Numer. Meth. Engng</addtitle><date>2002-03-10</date><risdate>2002</risdate><volume>53</volume><issue>7</issue><spage>1557</spage><epage>1574</epage><pages>1557-1574</pages><issn>0029-5981</issn><eissn>1097-0207</eissn><abstract>The theory of configurational forces is briefly recast, together with the underlying balance laws. It is shown, that in the case of a homogeneous body without body forces the additional balance laws are identically satisfied if the standard force balance holds. In approximate solutions, for example obtained by finite elements, the equilibrium is not satisfied exactly, thus configurational forces occur on discretization nodes. An implementation of the configurational force balance into the finite element scheme is presented. The use of configurational forces is discussed with three main aspects. It is demonstrated how configurational forces can be used to check and to improve the finite element solution. Examples from fracture mechanics and problems with material inhomogeneities are discussed. Copyright © 2001 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/nme.351</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0029-5981
ispartof International journal for numerical methods in engineering, 2002-03, Vol.53 (7), p.1557-1574
issn 0029-5981
1097-0207
language eng
recordid cdi_proquest_miscellaneous_27581253
source Wiley Online Library All Journals
subjects configurational forces
energy-momentum tensor (Eshelby)
finite elements
inhomogeneity
J-integral
material forces
title On configurational forces in the context of the finite element method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T14%3A58%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20configurational%20forces%20in%20the%20context%20of%20the%20finite%20element%20method&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20engineering&rft.au=Mueller,%20R.&rft.date=2002-03-10&rft.volume=53&rft.issue=7&rft.spage=1557&rft.epage=1574&rft.pages=1557-1574&rft.issn=0029-5981&rft.eissn=1097-0207&rft_id=info:doi/10.1002/nme.351&rft_dat=%3Cproquest_cross%3E27581253%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27581253&rft_id=info:pmid/&rfr_iscdi=true