Taming Quantum Noise for Efficient Low Temperature Simulations of Open Quantum Systems

The hierarchical equations of motion (HEOM), derived from the exact Feynman-Vernon path integral, is one of the most powerful numerical methods to simulate the dynamics of open quantum systems. Its applicability has so far been limited to specific forms of spectral reservoir distributions and relati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2022-12, Vol.129 (23), p.230601-230601, Article 230601
Hauptverfasser: Xu, Meng, Yan, Yaming, Shi, Qiang, Ankerhold, J, Stockburger, J T
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 230601
container_issue 23
container_start_page 230601
container_title Physical review letters
container_volume 129
creator Xu, Meng
Yan, Yaming
Shi, Qiang
Ankerhold, J
Stockburger, J T
description The hierarchical equations of motion (HEOM), derived from the exact Feynman-Vernon path integral, is one of the most powerful numerical methods to simulate the dynamics of open quantum systems. Its applicability has so far been limited to specific forms of spectral reservoir distributions and relatively elevated temperatures. Here we solve this problem and introduce an effective treatment of quantum noise in frequency space by systematically clustering higher order Matsubara poles, equivalent to an optimized rational decomposition. This leads to an elegant extension of the HEOM to arbitrary temperatures and very general reservoirs in combination with efficiency, high accuracy, and long-time stability. Moreover, the technique can directly be implemented in other approaches such as Green's function, stochastic, and pseudomode formulations. As one highly nontrivial application, for the subohmic spin-boson model at vanishing temperature the Shiba relation is quantitatively verified which predicts the long-time decay of correlation functions.
doi_str_mv 10.1103/PhysRevLett.129.230601
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2758116398</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2758116398</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-8fa3aa67414ac7720c4c8ca1ee0d09fa0481308ceee031251ed3ddf77a64a423</originalsourceid><addsrcrecordid>eNpNkFtLw0AQhRdRbK3-hbKPvqTOZJPd5FFKvUCwaouvYd3MaiQ3sxul_95Ka_HpwHC-OfAxNkWYIYK4enzfuGf6ysj7GYbpLBQgAY_YGEGlgUKMjtkYQGCQAqgRO3PuAwAwlMkpGwkZSxFCPGYva12XzRt_GnTjh5o_tKUjbtueL6wtTUmN51n7zddUd9RrP_TEV2U9VNqXbeN4a_myo-bArzbOU-3O2YnVlaOLfU7Y-maxnt8F2fL2fn6dBUbIyAeJ1UJrqSKMtFEqBBOZxGgkggJSqyFKUEBiaHsQGMZIhSgKq5SWkY5CMWGXu7dd334O5Hxel85QVemG2sHloYoTRCnSZFuVu6rpW-d6snnXl7XuNzlC_qs0_6c03yrNd0q34HS_MbzWVBywP4fiB-6Wdhw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2758116398</pqid></control><display><type>article</type><title>Taming Quantum Noise for Efficient Low Temperature Simulations of Open Quantum Systems</title><source>EZB Electronic Journals Library</source><source>APS: American Physical Society E-Journals (Physics)</source><creator>Xu, Meng ; Yan, Yaming ; Shi, Qiang ; Ankerhold, J ; Stockburger, J T</creator><creatorcontrib>Xu, Meng ; Yan, Yaming ; Shi, Qiang ; Ankerhold, J ; Stockburger, J T</creatorcontrib><description>The hierarchical equations of motion (HEOM), derived from the exact Feynman-Vernon path integral, is one of the most powerful numerical methods to simulate the dynamics of open quantum systems. Its applicability has so far been limited to specific forms of spectral reservoir distributions and relatively elevated temperatures. Here we solve this problem and introduce an effective treatment of quantum noise in frequency space by systematically clustering higher order Matsubara poles, equivalent to an optimized rational decomposition. This leads to an elegant extension of the HEOM to arbitrary temperatures and very general reservoirs in combination with efficiency, high accuracy, and long-time stability. Moreover, the technique can directly be implemented in other approaches such as Green's function, stochastic, and pseudomode formulations. As one highly nontrivial application, for the subohmic spin-boson model at vanishing temperature the Shiba relation is quantitatively verified which predicts the long-time decay of correlation functions.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.129.230601</identifier><identifier>PMID: 36563205</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review letters, 2022-12, Vol.129 (23), p.230601-230601, Article 230601</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-8fa3aa67414ac7720c4c8ca1ee0d09fa0481308ceee031251ed3ddf77a64a423</citedby><cites>FETCH-LOGICAL-c364t-8fa3aa67414ac7720c4c8ca1ee0d09fa0481308ceee031251ed3ddf77a64a423</cites><orcidid>0000-0002-9046-2924 ; 0000-0002-8801-0515 ; 0000-0002-2440-0645 ; 0000-0002-6510-659X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2862,2863,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36563205$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Meng</creatorcontrib><creatorcontrib>Yan, Yaming</creatorcontrib><creatorcontrib>Shi, Qiang</creatorcontrib><creatorcontrib>Ankerhold, J</creatorcontrib><creatorcontrib>Stockburger, J T</creatorcontrib><title>Taming Quantum Noise for Efficient Low Temperature Simulations of Open Quantum Systems</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>The hierarchical equations of motion (HEOM), derived from the exact Feynman-Vernon path integral, is one of the most powerful numerical methods to simulate the dynamics of open quantum systems. Its applicability has so far been limited to specific forms of spectral reservoir distributions and relatively elevated temperatures. Here we solve this problem and introduce an effective treatment of quantum noise in frequency space by systematically clustering higher order Matsubara poles, equivalent to an optimized rational decomposition. This leads to an elegant extension of the HEOM to arbitrary temperatures and very general reservoirs in combination with efficiency, high accuracy, and long-time stability. Moreover, the technique can directly be implemented in other approaches such as Green's function, stochastic, and pseudomode formulations. As one highly nontrivial application, for the subohmic spin-boson model at vanishing temperature the Shiba relation is quantitatively verified which predicts the long-time decay of correlation functions.</description><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpNkFtLw0AQhRdRbK3-hbKPvqTOZJPd5FFKvUCwaouvYd3MaiQ3sxul_95Ka_HpwHC-OfAxNkWYIYK4enzfuGf6ysj7GYbpLBQgAY_YGEGlgUKMjtkYQGCQAqgRO3PuAwAwlMkpGwkZSxFCPGYva12XzRt_GnTjh5o_tKUjbtueL6wtTUmN51n7zddUd9RrP_TEV2U9VNqXbeN4a_myo-bArzbOU-3O2YnVlaOLfU7Y-maxnt8F2fL2fn6dBUbIyAeJ1UJrqSKMtFEqBBOZxGgkggJSqyFKUEBiaHsQGMZIhSgKq5SWkY5CMWGXu7dd334O5Hxel85QVemG2sHloYoTRCnSZFuVu6rpW-d6snnXl7XuNzlC_qs0_6c03yrNd0q34HS_MbzWVBywP4fiB-6Wdhw</recordid><startdate>20221202</startdate><enddate>20221202</enddate><creator>Xu, Meng</creator><creator>Yan, Yaming</creator><creator>Shi, Qiang</creator><creator>Ankerhold, J</creator><creator>Stockburger, J T</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9046-2924</orcidid><orcidid>https://orcid.org/0000-0002-8801-0515</orcidid><orcidid>https://orcid.org/0000-0002-2440-0645</orcidid><orcidid>https://orcid.org/0000-0002-6510-659X</orcidid></search><sort><creationdate>20221202</creationdate><title>Taming Quantum Noise for Efficient Low Temperature Simulations of Open Quantum Systems</title><author>Xu, Meng ; Yan, Yaming ; Shi, Qiang ; Ankerhold, J ; Stockburger, J T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-8fa3aa67414ac7720c4c8ca1ee0d09fa0481308ceee031251ed3ddf77a64a423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Meng</creatorcontrib><creatorcontrib>Yan, Yaming</creatorcontrib><creatorcontrib>Shi, Qiang</creatorcontrib><creatorcontrib>Ankerhold, J</creatorcontrib><creatorcontrib>Stockburger, J T</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Meng</au><au>Yan, Yaming</au><au>Shi, Qiang</au><au>Ankerhold, J</au><au>Stockburger, J T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Taming Quantum Noise for Efficient Low Temperature Simulations of Open Quantum Systems</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2022-12-02</date><risdate>2022</risdate><volume>129</volume><issue>23</issue><spage>230601</spage><epage>230601</epage><pages>230601-230601</pages><artnum>230601</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>The hierarchical equations of motion (HEOM), derived from the exact Feynman-Vernon path integral, is one of the most powerful numerical methods to simulate the dynamics of open quantum systems. Its applicability has so far been limited to specific forms of spectral reservoir distributions and relatively elevated temperatures. Here we solve this problem and introduce an effective treatment of quantum noise in frequency space by systematically clustering higher order Matsubara poles, equivalent to an optimized rational decomposition. This leads to an elegant extension of the HEOM to arbitrary temperatures and very general reservoirs in combination with efficiency, high accuracy, and long-time stability. Moreover, the technique can directly be implemented in other approaches such as Green's function, stochastic, and pseudomode formulations. As one highly nontrivial application, for the subohmic spin-boson model at vanishing temperature the Shiba relation is quantitatively verified which predicts the long-time decay of correlation functions.</abstract><cop>United States</cop><pmid>36563205</pmid><doi>10.1103/PhysRevLett.129.230601</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-9046-2924</orcidid><orcidid>https://orcid.org/0000-0002-8801-0515</orcidid><orcidid>https://orcid.org/0000-0002-2440-0645</orcidid><orcidid>https://orcid.org/0000-0002-6510-659X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2022-12, Vol.129 (23), p.230601-230601, Article 230601
issn 0031-9007
1079-7114
language eng
recordid cdi_proquest_miscellaneous_2758116398
source EZB Electronic Journals Library; APS: American Physical Society E-Journals (Physics)
title Taming Quantum Noise for Efficient Low Temperature Simulations of Open Quantum Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T19%3A24%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Taming%20Quantum%20Noise%20for%20Efficient%20Low%20Temperature%20Simulations%20of%20Open%20Quantum%20Systems&rft.jtitle=Physical%20review%20letters&rft.au=Xu,%20Meng&rft.date=2022-12-02&rft.volume=129&rft.issue=23&rft.spage=230601&rft.epage=230601&rft.pages=230601-230601&rft.artnum=230601&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.129.230601&rft_dat=%3Cproquest_cross%3E2758116398%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2758116398&rft_id=info:pmid/36563205&rfr_iscdi=true