Stochastic Fluctuations Drive Non-genetic Evolution of Proliferation in Clonal Cancer Cell Populations

Evolutionary dynamics allows us to understand many changes happening in a broad variety of biological systems, ranging from individuals to complete ecosystems. It is also behind a number of remarkable organizational changes that happen during the natural history of cancers. These reflect tumour hete...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of mathematical biology 2023-01, Vol.85 (1), p.8-8, Article 8
Hauptverfasser: Ortega-Sabater, Carmen, F. Calvo, Gabriel, Dinić, Jelena, Podolski, Ana, Pesic, Milica, Pérez-García, Víctor
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8
container_issue 1
container_start_page 8
container_title Bulletin of mathematical biology
container_volume 85
creator Ortega-Sabater, Carmen
F. Calvo, Gabriel
Dinić, Jelena
Podolski, Ana
Pesic, Milica
Pérez-García, Víctor
description Evolutionary dynamics allows us to understand many changes happening in a broad variety of biological systems, ranging from individuals to complete ecosystems. It is also behind a number of remarkable organizational changes that happen during the natural history of cancers. These reflect tumour heterogeneity, which is present at all cellular levels, including the genome, proteome and phenome, shaping its development and interrelation with its environment. An intriguing observation in different cohorts of oncological patients is that tumours exhibit an increased proliferation as the disease progresses, while the timescales involved are apparently too short for the fixation of sufficient driver mutations to promote explosive growth. Here, we discuss how phenotypic plasticity, emerging from a single genotype, may play a key role and provide a ground for a continuous acceleration of the proliferation rate of clonal populations with time. We address this question by combining the analysis of real-time growth of non-small-cell lung carcinoma cells (N-H460) together with stochastic and deterministic mathematical models that capture proliferation trait heterogeneity in clonal populations to elucidate the contribution of phenotypic transitions on tumour growth dynamics.
doi_str_mv 10.1007/s11538-022-01113-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2758113585</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2757413124</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-532b47bebca0fc83c66f15fddea08e12d6ed92f1f585bec7da36b237385fc4b63</originalsourceid><addsrcrecordid>eNp9kUtLxDAUhYMozjj6B1xIwI2bah5NH0upTxhUUNchTW-0Q6YZk1bw35uZ-gAXrkI43zm5uQehQ0pOKSH5WaBU8CIhjCWEUsqTdAtNqYjXMiNsG00JKVlSsJRM0F4ICxJNJS930YRnImMFF1NkHnunX1XoW42v7KD7QfWt6wK-8O074DvXJS_QwVq-fHd2WIvYGfzgnW0N-A2N2w5X1nXK4kp1GjyuwFr84FaDHeP20Y5RNsDB1zlDz1eXT9VNMr-_vq3O54lOadkngrM6zWuotSJGF1xnmaHCNA0oUgBlTQZNyQw1ohA16LxRPKsZz3khjE7rjM_QyZi78u5tgNDLZRt0HEZ14IYgWS6KuKloj-jxH3ThBh__sKHylHLK0kixkdLeheDByJVvl8p_SErkugU5tiBjC3LTglybjr6ih3oJzY_le-0R4CMQotS9gP99-5_YT9wYk30</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2757413124</pqid></control><display><type>article</type><title>Stochastic Fluctuations Drive Non-genetic Evolution of Proliferation in Clonal Cancer Cell Populations</title><source>MEDLINE</source><source>SpringerNature Journals</source><creator>Ortega-Sabater, Carmen ; F. Calvo, Gabriel ; Dinić, Jelena ; Podolski, Ana ; Pesic, Milica ; Pérez-García, Víctor</creator><creatorcontrib>Ortega-Sabater, Carmen ; F. Calvo, Gabriel ; Dinić, Jelena ; Podolski, Ana ; Pesic, Milica ; Pérez-García, Víctor</creatorcontrib><description>Evolutionary dynamics allows us to understand many changes happening in a broad variety of biological systems, ranging from individuals to complete ecosystems. It is also behind a number of remarkable organizational changes that happen during the natural history of cancers. These reflect tumour heterogeneity, which is present at all cellular levels, including the genome, proteome and phenome, shaping its development and interrelation with its environment. An intriguing observation in different cohorts of oncological patients is that tumours exhibit an increased proliferation as the disease progresses, while the timescales involved are apparently too short for the fixation of sufficient driver mutations to promote explosive growth. Here, we discuss how phenotypic plasticity, emerging from a single genotype, may play a key role and provide a ground for a continuous acceleration of the proliferation rate of clonal populations with time. We address this question by combining the analysis of real-time growth of non-small-cell lung carcinoma cells (N-H460) together with stochastic and deterministic mathematical models that capture proliferation trait heterogeneity in clonal populations to elucidate the contribution of phenotypic transitions on tumour growth dynamics.</description><identifier>ISSN: 0092-8240</identifier><identifier>EISSN: 1522-9602</identifier><identifier>DOI: 10.1007/s11538-022-01113-4</identifier><identifier>PMID: 36562835</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Biological Evolution ; Cancer ; Carcinoma, Non-Small-Cell Lung ; Cell Biology ; Cell Proliferation ; Ecosystem ; Evolution &amp; development ; Genomes ; Genotypes ; Heterogeneity ; Humans ; Life Sciences ; Lung cancer ; Lung carcinoma ; Lung Neoplasms ; Mathematical and Computational Biology ; Mathematical Concepts ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Models, Biological ; Mutation ; Non-small cell lung carcinoma ; Original Article ; Phenotype ; Phenotypic plasticity ; Populations ; Proteomes ; Stochastic Processes ; Stochasticity ; Strategic planning ; Tumors</subject><ispartof>Bulletin of mathematical biology, 2023-01, Vol.85 (1), p.8-8, Article 8</ispartof><rights>The Author(s), under exclusive licence to Society for Mathematical Biology 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2022. The Author(s), under exclusive licence to Society for Mathematical Biology.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-532b47bebca0fc83c66f15fddea08e12d6ed92f1f585bec7da36b237385fc4b63</citedby><cites>FETCH-LOGICAL-c419t-532b47bebca0fc83c66f15fddea08e12d6ed92f1f585bec7da36b237385fc4b63</cites><orcidid>0000-0002-5469-1009</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11538-022-01113-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11538-022-01113-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36562835$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ortega-Sabater, Carmen</creatorcontrib><creatorcontrib>F. Calvo, Gabriel</creatorcontrib><creatorcontrib>Dinić, Jelena</creatorcontrib><creatorcontrib>Podolski, Ana</creatorcontrib><creatorcontrib>Pesic, Milica</creatorcontrib><creatorcontrib>Pérez-García, Víctor</creatorcontrib><title>Stochastic Fluctuations Drive Non-genetic Evolution of Proliferation in Clonal Cancer Cell Populations</title><title>Bulletin of mathematical biology</title><addtitle>Bull Math Biol</addtitle><addtitle>Bull Math Biol</addtitle><description>Evolutionary dynamics allows us to understand many changes happening in a broad variety of biological systems, ranging from individuals to complete ecosystems. It is also behind a number of remarkable organizational changes that happen during the natural history of cancers. These reflect tumour heterogeneity, which is present at all cellular levels, including the genome, proteome and phenome, shaping its development and interrelation with its environment. An intriguing observation in different cohorts of oncological patients is that tumours exhibit an increased proliferation as the disease progresses, while the timescales involved are apparently too short for the fixation of sufficient driver mutations to promote explosive growth. Here, we discuss how phenotypic plasticity, emerging from a single genotype, may play a key role and provide a ground for a continuous acceleration of the proliferation rate of clonal populations with time. We address this question by combining the analysis of real-time growth of non-small-cell lung carcinoma cells (N-H460) together with stochastic and deterministic mathematical models that capture proliferation trait heterogeneity in clonal populations to elucidate the contribution of phenotypic transitions on tumour growth dynamics.</description><subject>Biological Evolution</subject><subject>Cancer</subject><subject>Carcinoma, Non-Small-Cell Lung</subject><subject>Cell Biology</subject><subject>Cell Proliferation</subject><subject>Ecosystem</subject><subject>Evolution &amp; development</subject><subject>Genomes</subject><subject>Genotypes</subject><subject>Heterogeneity</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Lung cancer</subject><subject>Lung carcinoma</subject><subject>Lung Neoplasms</subject><subject>Mathematical and Computational Biology</subject><subject>Mathematical Concepts</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Models, Biological</subject><subject>Mutation</subject><subject>Non-small cell lung carcinoma</subject><subject>Original Article</subject><subject>Phenotype</subject><subject>Phenotypic plasticity</subject><subject>Populations</subject><subject>Proteomes</subject><subject>Stochastic Processes</subject><subject>Stochasticity</subject><subject>Strategic planning</subject><subject>Tumors</subject><issn>0092-8240</issn><issn>1522-9602</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kUtLxDAUhYMozjj6B1xIwI2bah5NH0upTxhUUNchTW-0Q6YZk1bw35uZ-gAXrkI43zm5uQehQ0pOKSH5WaBU8CIhjCWEUsqTdAtNqYjXMiNsG00JKVlSsJRM0F4ICxJNJS930YRnImMFF1NkHnunX1XoW42v7KD7QfWt6wK-8O074DvXJS_QwVq-fHd2WIvYGfzgnW0N-A2N2w5X1nXK4kp1GjyuwFr84FaDHeP20Y5RNsDB1zlDz1eXT9VNMr-_vq3O54lOadkngrM6zWuotSJGF1xnmaHCNA0oUgBlTQZNyQw1ohA16LxRPKsZz3khjE7rjM_QyZi78u5tgNDLZRt0HEZ14IYgWS6KuKloj-jxH3ThBh__sKHylHLK0kixkdLeheDByJVvl8p_SErkugU5tiBjC3LTglybjr6ih3oJzY_le-0R4CMQotS9gP99-5_YT9wYk30</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Ortega-Sabater, Carmen</creator><creator>F. Calvo, Gabriel</creator><creator>Dinić, Jelena</creator><creator>Podolski, Ana</creator><creator>Pesic, Milica</creator><creator>Pérez-García, Víctor</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SS</scope><scope>7TK</scope><scope>JQ2</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5469-1009</orcidid></search><sort><creationdate>20230101</creationdate><title>Stochastic Fluctuations Drive Non-genetic Evolution of Proliferation in Clonal Cancer Cell Populations</title><author>Ortega-Sabater, Carmen ; F. Calvo, Gabriel ; Dinić, Jelena ; Podolski, Ana ; Pesic, Milica ; Pérez-García, Víctor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-532b47bebca0fc83c66f15fddea08e12d6ed92f1f585bec7da36b237385fc4b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Biological Evolution</topic><topic>Cancer</topic><topic>Carcinoma, Non-Small-Cell Lung</topic><topic>Cell Biology</topic><topic>Cell Proliferation</topic><topic>Ecosystem</topic><topic>Evolution &amp; development</topic><topic>Genomes</topic><topic>Genotypes</topic><topic>Heterogeneity</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Lung cancer</topic><topic>Lung carcinoma</topic><topic>Lung Neoplasms</topic><topic>Mathematical and Computational Biology</topic><topic>Mathematical Concepts</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Models, Biological</topic><topic>Mutation</topic><topic>Non-small cell lung carcinoma</topic><topic>Original Article</topic><topic>Phenotype</topic><topic>Phenotypic plasticity</topic><topic>Populations</topic><topic>Proteomes</topic><topic>Stochastic Processes</topic><topic>Stochasticity</topic><topic>Strategic planning</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ortega-Sabater, Carmen</creatorcontrib><creatorcontrib>F. Calvo, Gabriel</creatorcontrib><creatorcontrib>Dinić, Jelena</creatorcontrib><creatorcontrib>Podolski, Ana</creatorcontrib><creatorcontrib>Pesic, Milica</creatorcontrib><creatorcontrib>Pérez-García, Víctor</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Bulletin of mathematical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ortega-Sabater, Carmen</au><au>F. Calvo, Gabriel</au><au>Dinić, Jelena</au><au>Podolski, Ana</au><au>Pesic, Milica</au><au>Pérez-García, Víctor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stochastic Fluctuations Drive Non-genetic Evolution of Proliferation in Clonal Cancer Cell Populations</atitle><jtitle>Bulletin of mathematical biology</jtitle><stitle>Bull Math Biol</stitle><addtitle>Bull Math Biol</addtitle><date>2023-01-01</date><risdate>2023</risdate><volume>85</volume><issue>1</issue><spage>8</spage><epage>8</epage><pages>8-8</pages><artnum>8</artnum><issn>0092-8240</issn><eissn>1522-9602</eissn><abstract>Evolutionary dynamics allows us to understand many changes happening in a broad variety of biological systems, ranging from individuals to complete ecosystems. It is also behind a number of remarkable organizational changes that happen during the natural history of cancers. These reflect tumour heterogeneity, which is present at all cellular levels, including the genome, proteome and phenome, shaping its development and interrelation with its environment. An intriguing observation in different cohorts of oncological patients is that tumours exhibit an increased proliferation as the disease progresses, while the timescales involved are apparently too short for the fixation of sufficient driver mutations to promote explosive growth. Here, we discuss how phenotypic plasticity, emerging from a single genotype, may play a key role and provide a ground for a continuous acceleration of the proliferation rate of clonal populations with time. We address this question by combining the analysis of real-time growth of non-small-cell lung carcinoma cells (N-H460) together with stochastic and deterministic mathematical models that capture proliferation trait heterogeneity in clonal populations to elucidate the contribution of phenotypic transitions on tumour growth dynamics.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>36562835</pmid><doi>10.1007/s11538-022-01113-4</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-5469-1009</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0092-8240
ispartof Bulletin of mathematical biology, 2023-01, Vol.85 (1), p.8-8, Article 8
issn 0092-8240
1522-9602
language eng
recordid cdi_proquest_miscellaneous_2758113585
source MEDLINE; SpringerNature Journals
subjects Biological Evolution
Cancer
Carcinoma, Non-Small-Cell Lung
Cell Biology
Cell Proliferation
Ecosystem
Evolution & development
Genomes
Genotypes
Heterogeneity
Humans
Life Sciences
Lung cancer
Lung carcinoma
Lung Neoplasms
Mathematical and Computational Biology
Mathematical Concepts
Mathematical models
Mathematics
Mathematics and Statistics
Models, Biological
Mutation
Non-small cell lung carcinoma
Original Article
Phenotype
Phenotypic plasticity
Populations
Proteomes
Stochastic Processes
Stochasticity
Strategic planning
Tumors
title Stochastic Fluctuations Drive Non-genetic Evolution of Proliferation in Clonal Cancer Cell Populations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T00%3A06%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stochastic%20Fluctuations%20Drive%20Non-genetic%20Evolution%20of%20Proliferation%20in%20Clonal%20Cancer%20Cell%20Populations&rft.jtitle=Bulletin%20of%20mathematical%20biology&rft.au=Ortega-Sabater,%20Carmen&rft.date=2023-01-01&rft.volume=85&rft.issue=1&rft.spage=8&rft.epage=8&rft.pages=8-8&rft.artnum=8&rft.issn=0092-8240&rft.eissn=1522-9602&rft_id=info:doi/10.1007/s11538-022-01113-4&rft_dat=%3Cproquest_cross%3E2757413124%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2757413124&rft_id=info:pmid/36562835&rfr_iscdi=true