Probabilistic neural network equalizer for nonlinear mitigation in OAM mode division multiplexed optical fiber communication

Orbital angular momentum (OAM) mode-division multiplexing (MDM) is a key technique to achieve ultra-high-capacity optical fiber communications. However, the high nonlinear impairment from optoelectronic devices, such as spatial light modulators, modulators, and photodiodes, is a long-standing challe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics express 2022-12, Vol.30 (26), p.47957-47969
Hauptverfasser: Wang, Fei, Gao, Ran, Zhou, Sitong, Li, Zhipei, Cui, Yi, Chang, Huan, Wang, Fu, Guo, Dong, Yu, Chao, Liu, Xinyu, Dong, Ze, Zhang, Qi, Tian, Qinghua, Tian, Feng, Wang, Yongjun, Huang, Xin, Yan, Jinghao, Jiang, Lin, Xin, Xiangjun
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 47969
container_issue 26
container_start_page 47957
container_title Optics express
container_volume 30
creator Wang, Fei
Gao, Ran
Zhou, Sitong
Li, Zhipei
Cui, Yi
Chang, Huan
Wang, Fu
Guo, Dong
Yu, Chao
Liu, Xinyu
Dong, Ze
Zhang, Qi
Tian, Qinghua
Tian, Feng
Wang, Yongjun
Huang, Xin
Yan, Jinghao
Jiang, Lin
Xin, Xiangjun
description Orbital angular momentum (OAM) mode-division multiplexing (MDM) is a key technique to achieve ultra-high-capacity optical fiber communications. However, the high nonlinear impairment from optoelectronic devices, such as spatial light modulators, modulators, and photodiodes, is a long-standing challenge for OAM-MDM. In this paper, an equalizer based on a probabilistic neural network (PNN) is presented to mitigate the nonlinear impairment for an OAM-MDM fiber communication system with 32 GBaud Nyquist pulse amplitude modulation-8 (PAM8) intensity-modulation direct-detection (IM-DD) signals. PNN equalizer can calculate the distribution of the nonlinearity using Bayesian decision theory and thus mitigate the stochastic nonlinear impairment of the received signal. Experimental results show that compared with the convolutional neural network (CNN) equalizer, the PNN equalizer improves the receiver sensitivity by 0.6dB and 2dB for two OAM modes with l = + 3 and l = + 4 at the 20% FEC limit, respectively. Moreover, compared with Volterra or CNN equalizers, the PNN equalizer can reduce the computation complexity significantly, which has great potential to mitigate the nonlinear signal distortions in high-speed IM-DD OAM-MDM fiber communication systems.
doi_str_mv 10.1364/OE.456908
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2758103084</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2758103084</sourcerecordid><originalsourceid>FETCH-LOGICAL-c320t-c9b49dfe206a74e6369386ec9f45541e8687ac6352e664ca021279dabb65ce083</originalsourceid><addsrcrecordid>eNpNkDtPwzAUhS0EoqUw8AeQRxhS7NhxnLGqykMqCgPMkePcIIMTp3bCS_x4UhUQ07k6-u43HIROKZlTJvhlvprzRGRE7qEpJRmPOJHp_r97go5CeCaE8jRLD9GEiSSRKY2n6Oveu1KVxprQG41bGLyyY_Rvzr9g2AzKmk_wuHYet661pgXlcWN686R641psWpwv7nDjKsCVeTVhWzaD7U1n4R0q7LpRPDprU44e7ZpmaMdi-3yMDmplA5z85Aw9Xq0eljfROr--XS7WkWYx6SOdlTyraoiJUCkHwUTGpACd1TxJOAUpZKq0YEkMQnCtSEzjNKtUWYpEA5Fshs533s67zQChLxoTNFirWnBDKOI0kZQwIvmIXuxQ7V0IHuqi86ZR_qOgpNiOXeSrYjf2yJ79aIeygeqP_F2XfQPmWHwU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2758103084</pqid></control><display><type>article</type><title>Probabilistic neural network equalizer for nonlinear mitigation in OAM mode division multiplexed optical fiber communication</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Wang, Fei ; Gao, Ran ; Zhou, Sitong ; Li, Zhipei ; Cui, Yi ; Chang, Huan ; Wang, Fu ; Guo, Dong ; Yu, Chao ; Liu, Xinyu ; Dong, Ze ; Zhang, Qi ; Tian, Qinghua ; Tian, Feng ; Wang, Yongjun ; Huang, Xin ; Yan, Jinghao ; Jiang, Lin ; Xin, Xiangjun</creator><creatorcontrib>Wang, Fei ; Gao, Ran ; Zhou, Sitong ; Li, Zhipei ; Cui, Yi ; Chang, Huan ; Wang, Fu ; Guo, Dong ; Yu, Chao ; Liu, Xinyu ; Dong, Ze ; Zhang, Qi ; Tian, Qinghua ; Tian, Feng ; Wang, Yongjun ; Huang, Xin ; Yan, Jinghao ; Jiang, Lin ; Xin, Xiangjun</creatorcontrib><description>Orbital angular momentum (OAM) mode-division multiplexing (MDM) is a key technique to achieve ultra-high-capacity optical fiber communications. However, the high nonlinear impairment from optoelectronic devices, such as spatial light modulators, modulators, and photodiodes, is a long-standing challenge for OAM-MDM. In this paper, an equalizer based on a probabilistic neural network (PNN) is presented to mitigate the nonlinear impairment for an OAM-MDM fiber communication system with 32 GBaud Nyquist pulse amplitude modulation-8 (PAM8) intensity-modulation direct-detection (IM-DD) signals. PNN equalizer can calculate the distribution of the nonlinearity using Bayesian decision theory and thus mitigate the stochastic nonlinear impairment of the received signal. Experimental results show that compared with the convolutional neural network (CNN) equalizer, the PNN equalizer improves the receiver sensitivity by 0.6dB and 2dB for two OAM modes with l = + 3 and l = + 4 at the 20% FEC limit, respectively. Moreover, compared with Volterra or CNN equalizers, the PNN equalizer can reduce the computation complexity significantly, which has great potential to mitigate the nonlinear signal distortions in high-speed IM-DD OAM-MDM fiber communication systems.</description><identifier>ISSN: 1094-4087</identifier><identifier>EISSN: 1094-4087</identifier><identifier>DOI: 10.1364/OE.456908</identifier><identifier>PMID: 36558712</identifier><language>eng</language><publisher>United States</publisher><ispartof>Optics express, 2022-12, Vol.30 (26), p.47957-47969</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c320t-c9b49dfe206a74e6369386ec9f45541e8687ac6352e664ca021279dabb65ce083</citedby><cites>FETCH-LOGICAL-c320t-c9b49dfe206a74e6369386ec9f45541e8687ac6352e664ca021279dabb65ce083</cites><orcidid>0000-0002-1169-9078 ; 0000-0001-5773-9461 ; 0000-0003-1482-2235 ; 0000-0002-5596-4208</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36558712$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Fei</creatorcontrib><creatorcontrib>Gao, Ran</creatorcontrib><creatorcontrib>Zhou, Sitong</creatorcontrib><creatorcontrib>Li, Zhipei</creatorcontrib><creatorcontrib>Cui, Yi</creatorcontrib><creatorcontrib>Chang, Huan</creatorcontrib><creatorcontrib>Wang, Fu</creatorcontrib><creatorcontrib>Guo, Dong</creatorcontrib><creatorcontrib>Yu, Chao</creatorcontrib><creatorcontrib>Liu, Xinyu</creatorcontrib><creatorcontrib>Dong, Ze</creatorcontrib><creatorcontrib>Zhang, Qi</creatorcontrib><creatorcontrib>Tian, Qinghua</creatorcontrib><creatorcontrib>Tian, Feng</creatorcontrib><creatorcontrib>Wang, Yongjun</creatorcontrib><creatorcontrib>Huang, Xin</creatorcontrib><creatorcontrib>Yan, Jinghao</creatorcontrib><creatorcontrib>Jiang, Lin</creatorcontrib><creatorcontrib>Xin, Xiangjun</creatorcontrib><title>Probabilistic neural network equalizer for nonlinear mitigation in OAM mode division multiplexed optical fiber communication</title><title>Optics express</title><addtitle>Opt Express</addtitle><description>Orbital angular momentum (OAM) mode-division multiplexing (MDM) is a key technique to achieve ultra-high-capacity optical fiber communications. However, the high nonlinear impairment from optoelectronic devices, such as spatial light modulators, modulators, and photodiodes, is a long-standing challenge for OAM-MDM. In this paper, an equalizer based on a probabilistic neural network (PNN) is presented to mitigate the nonlinear impairment for an OAM-MDM fiber communication system with 32 GBaud Nyquist pulse amplitude modulation-8 (PAM8) intensity-modulation direct-detection (IM-DD) signals. PNN equalizer can calculate the distribution of the nonlinearity using Bayesian decision theory and thus mitigate the stochastic nonlinear impairment of the received signal. Experimental results show that compared with the convolutional neural network (CNN) equalizer, the PNN equalizer improves the receiver sensitivity by 0.6dB and 2dB for two OAM modes with l = + 3 and l = + 4 at the 20% FEC limit, respectively. Moreover, compared with Volterra or CNN equalizers, the PNN equalizer can reduce the computation complexity significantly, which has great potential to mitigate the nonlinear signal distortions in high-speed IM-DD OAM-MDM fiber communication systems.</description><issn>1094-4087</issn><issn>1094-4087</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpNkDtPwzAUhS0EoqUw8AeQRxhS7NhxnLGqykMqCgPMkePcIIMTp3bCS_x4UhUQ07k6-u43HIROKZlTJvhlvprzRGRE7qEpJRmPOJHp_r97go5CeCaE8jRLD9GEiSSRKY2n6Oveu1KVxprQG41bGLyyY_Rvzr9g2AzKmk_wuHYet661pgXlcWN686R641psWpwv7nDjKsCVeTVhWzaD7U1n4R0q7LpRPDprU44e7ZpmaMdi-3yMDmplA5z85Aw9Xq0eljfROr--XS7WkWYx6SOdlTyraoiJUCkHwUTGpACd1TxJOAUpZKq0YEkMQnCtSEzjNKtUWYpEA5Fshs533s67zQChLxoTNFirWnBDKOI0kZQwIvmIXuxQ7V0IHuqi86ZR_qOgpNiOXeSrYjf2yJ79aIeygeqP_F2XfQPmWHwU</recordid><startdate>20221219</startdate><enddate>20221219</enddate><creator>Wang, Fei</creator><creator>Gao, Ran</creator><creator>Zhou, Sitong</creator><creator>Li, Zhipei</creator><creator>Cui, Yi</creator><creator>Chang, Huan</creator><creator>Wang, Fu</creator><creator>Guo, Dong</creator><creator>Yu, Chao</creator><creator>Liu, Xinyu</creator><creator>Dong, Ze</creator><creator>Zhang, Qi</creator><creator>Tian, Qinghua</creator><creator>Tian, Feng</creator><creator>Wang, Yongjun</creator><creator>Huang, Xin</creator><creator>Yan, Jinghao</creator><creator>Jiang, Lin</creator><creator>Xin, Xiangjun</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1169-9078</orcidid><orcidid>https://orcid.org/0000-0001-5773-9461</orcidid><orcidid>https://orcid.org/0000-0003-1482-2235</orcidid><orcidid>https://orcid.org/0000-0002-5596-4208</orcidid></search><sort><creationdate>20221219</creationdate><title>Probabilistic neural network equalizer for nonlinear mitigation in OAM mode division multiplexed optical fiber communication</title><author>Wang, Fei ; Gao, Ran ; Zhou, Sitong ; Li, Zhipei ; Cui, Yi ; Chang, Huan ; Wang, Fu ; Guo, Dong ; Yu, Chao ; Liu, Xinyu ; Dong, Ze ; Zhang, Qi ; Tian, Qinghua ; Tian, Feng ; Wang, Yongjun ; Huang, Xin ; Yan, Jinghao ; Jiang, Lin ; Xin, Xiangjun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c320t-c9b49dfe206a74e6369386ec9f45541e8687ac6352e664ca021279dabb65ce083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Fei</creatorcontrib><creatorcontrib>Gao, Ran</creatorcontrib><creatorcontrib>Zhou, Sitong</creatorcontrib><creatorcontrib>Li, Zhipei</creatorcontrib><creatorcontrib>Cui, Yi</creatorcontrib><creatorcontrib>Chang, Huan</creatorcontrib><creatorcontrib>Wang, Fu</creatorcontrib><creatorcontrib>Guo, Dong</creatorcontrib><creatorcontrib>Yu, Chao</creatorcontrib><creatorcontrib>Liu, Xinyu</creatorcontrib><creatorcontrib>Dong, Ze</creatorcontrib><creatorcontrib>Zhang, Qi</creatorcontrib><creatorcontrib>Tian, Qinghua</creatorcontrib><creatorcontrib>Tian, Feng</creatorcontrib><creatorcontrib>Wang, Yongjun</creatorcontrib><creatorcontrib>Huang, Xin</creatorcontrib><creatorcontrib>Yan, Jinghao</creatorcontrib><creatorcontrib>Jiang, Lin</creatorcontrib><creatorcontrib>Xin, Xiangjun</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Optics express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Fei</au><au>Gao, Ran</au><au>Zhou, Sitong</au><au>Li, Zhipei</au><au>Cui, Yi</au><au>Chang, Huan</au><au>Wang, Fu</au><au>Guo, Dong</au><au>Yu, Chao</au><au>Liu, Xinyu</au><au>Dong, Ze</au><au>Zhang, Qi</au><au>Tian, Qinghua</au><au>Tian, Feng</au><au>Wang, Yongjun</au><au>Huang, Xin</au><au>Yan, Jinghao</au><au>Jiang, Lin</au><au>Xin, Xiangjun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Probabilistic neural network equalizer for nonlinear mitigation in OAM mode division multiplexed optical fiber communication</atitle><jtitle>Optics express</jtitle><addtitle>Opt Express</addtitle><date>2022-12-19</date><risdate>2022</risdate><volume>30</volume><issue>26</issue><spage>47957</spage><epage>47969</epage><pages>47957-47969</pages><issn>1094-4087</issn><eissn>1094-4087</eissn><abstract>Orbital angular momentum (OAM) mode-division multiplexing (MDM) is a key technique to achieve ultra-high-capacity optical fiber communications. However, the high nonlinear impairment from optoelectronic devices, such as spatial light modulators, modulators, and photodiodes, is a long-standing challenge for OAM-MDM. In this paper, an equalizer based on a probabilistic neural network (PNN) is presented to mitigate the nonlinear impairment for an OAM-MDM fiber communication system with 32 GBaud Nyquist pulse amplitude modulation-8 (PAM8) intensity-modulation direct-detection (IM-DD) signals. PNN equalizer can calculate the distribution of the nonlinearity using Bayesian decision theory and thus mitigate the stochastic nonlinear impairment of the received signal. Experimental results show that compared with the convolutional neural network (CNN) equalizer, the PNN equalizer improves the receiver sensitivity by 0.6dB and 2dB for two OAM modes with l = + 3 and l = + 4 at the 20% FEC limit, respectively. Moreover, compared with Volterra or CNN equalizers, the PNN equalizer can reduce the computation complexity significantly, which has great potential to mitigate the nonlinear signal distortions in high-speed IM-DD OAM-MDM fiber communication systems.</abstract><cop>United States</cop><pmid>36558712</pmid><doi>10.1364/OE.456908</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-1169-9078</orcidid><orcidid>https://orcid.org/0000-0001-5773-9461</orcidid><orcidid>https://orcid.org/0000-0003-1482-2235</orcidid><orcidid>https://orcid.org/0000-0002-5596-4208</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1094-4087
ispartof Optics express, 2022-12, Vol.30 (26), p.47957-47969
issn 1094-4087
1094-4087
language eng
recordid cdi_proquest_miscellaneous_2758103084
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
title Probabilistic neural network equalizer for nonlinear mitigation in OAM mode division multiplexed optical fiber communication
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T09%3A26%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Probabilistic%20neural%20network%20equalizer%20for%20nonlinear%20mitigation%20in%20OAM%20mode%20division%20multiplexed%20optical%20fiber%20communication&rft.jtitle=Optics%20express&rft.au=Wang,%20Fei&rft.date=2022-12-19&rft.volume=30&rft.issue=26&rft.spage=47957&rft.epage=47969&rft.pages=47957-47969&rft.issn=1094-4087&rft.eissn=1094-4087&rft_id=info:doi/10.1364/OE.456908&rft_dat=%3Cproquest_cross%3E2758103084%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2758103084&rft_id=info:pmid/36558712&rfr_iscdi=true