Interface engineering of Mo-doped Ni9S8/Ni3S2 multiphase heterostructure nanoflowers by one step synthesis for efficient overall water splitting

Mo-Doped Ni9S8/Ni3S2 multiphase heterostructure nanoflowers were constructed by one-step synthesis. The in-situ derived heterogeneous structure minimized the interfacial resistance between Ni3S2 and the outer layer of Ni9S8, and thus Mo-Ni9S8/Ni3S2-0.1 exhibited excellent OER/HER bifunctional cataly...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of colloid and interface science 2023-03, Vol.634, p.563-574
Hauptverfasser: Wang, Liyan, Xue, Xiangdong, Luan, Qingjie, Guo, Junzhen, Chu, Liang, Wang, Zhaokun, Li, Baozhen, Yang, Mu, Wang, Ge
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 574
container_issue
container_start_page 563
container_title Journal of colloid and interface science
container_volume 634
creator Wang, Liyan
Xue, Xiangdong
Luan, Qingjie
Guo, Junzhen
Chu, Liang
Wang, Zhaokun
Li, Baozhen
Yang, Mu
Wang, Ge
description Mo-Doped Ni9S8/Ni3S2 multiphase heterostructure nanoflowers were constructed by one-step synthesis. The in-situ derived heterogeneous structure minimized the interfacial resistance between Ni3S2 and the outer layer of Ni9S8, and thus Mo-Ni9S8/Ni3S2-0.1 exhibited excellent OER/HER bifunctional catalytic activity in alkaline media. [Display omitted] Accelerating charge transfer efficiency by constructing heterogeneous interfaces on metal-based substrates is an effective way to improve the electrocatalytic performance of materials. However, minimizing the substrate-catalyst interfacial resistance to maximize catalytic activity remains a challenge. This study reports a simple interface engineering strategy for constructing Mo-Ni9S8/Ni3S2 heterostructured nanoflowers. Experimental and theoretical investigations reveal that the primary role assumed by Ni3S2 in Mo-Ni9S8/Ni3S2 heterostructure is to replace nickel foam (NF) substrate for electron conduction, and Ni3S2 has a lower potential energy barrier (0.76 to 1.11 eV) than NF (1.87 eV), resulting in a more effortless electron transfer. The interface between Ni3S2 and Mo-Ni9S8 effectively regulates electron redistribution, and when the electrons from Ni3S2 are transferred to Mo-Ni9S8, the potential energy barriers at the heterogeneous interface are 1.06 eV, lower than that between NF and Ni3S2 (1.53 eV). Mo-Ni9S8/Ni3S2-0.1 exhibited excellent oxygen evolution reaction (OER)/hydrogen evolution reaction (HER) bifunctional catalytic activity in 1 M KOH, with overpotentials of only 223 mV@100 mA cm−2 for OER and 116 mV@10 mA cm−2 for HER. Moreover, when combined with an alkaline electrolytic cell, it required only an ultra-low cell voltage of 1.51 V to drive a current density of 10 mA cm−2. This work provides new inspirations for rationally designing interface engineering for advanced catalytic materials.
doi_str_mv 10.1016/j.jcis.2022.12.064
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2758102725</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021979722022123</els_id><sourcerecordid>2758102725</sourcerecordid><originalsourceid>FETCH-LOGICAL-c263t-885f3333cecdd01e26701ffbeda0c642f0868dc2eecce891b843a1d5732b39ad3</originalsourceid><addsrcrecordid>eNp9kLtOAzEQRS0EEuHxA1QuaXaxvdmXRIMQL4lHAdSWY4-Jo429eLyg_AWfjKNQM800c-7oHkLOOCs5483Fqlxph6VgQpRclKyZ75EZZ31dtJxV-2TGmOBF3_btITlCXDHGeV33M_Lz4BNEqzRQ8B_OA0TnP2iw9CkUJoxg6LPrX7uLZ1e9CrqehuTGpUKgS8hgwBQnnaYI1Csf7BC-ISJdbGjwQDHBSHHj0xLQIbUhUrDWaQc-0fAFUQ0D_VY5h-I4uJTy6xNyYNWAcPq3j8n77c3b9X3x-HL3cH31WGjRVKnoutpWeTRoYxgH0bSMW7sAo5hu5sKyrumMFgBaQ9fzRTevFDd1W4lF1StTHZPzXe4Yw-cEmOTaoYZhUB7ChFK0dceZaEWdT8XuVOe-GMHKMbq1ihvJmdzqlyu51S-3-iUXMuvP0OUOglziy0GUuO2twbgIOkkT3H_4L5OTki0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2758102725</pqid></control><display><type>article</type><title>Interface engineering of Mo-doped Ni9S8/Ni3S2 multiphase heterostructure nanoflowers by one step synthesis for efficient overall water splitting</title><source>Elsevier ScienceDirect Journals</source><creator>Wang, Liyan ; Xue, Xiangdong ; Luan, Qingjie ; Guo, Junzhen ; Chu, Liang ; Wang, Zhaokun ; Li, Baozhen ; Yang, Mu ; Wang, Ge</creator><creatorcontrib>Wang, Liyan ; Xue, Xiangdong ; Luan, Qingjie ; Guo, Junzhen ; Chu, Liang ; Wang, Zhaokun ; Li, Baozhen ; Yang, Mu ; Wang, Ge</creatorcontrib><description>Mo-Doped Ni9S8/Ni3S2 multiphase heterostructure nanoflowers were constructed by one-step synthesis. The in-situ derived heterogeneous structure minimized the interfacial resistance between Ni3S2 and the outer layer of Ni9S8, and thus Mo-Ni9S8/Ni3S2-0.1 exhibited excellent OER/HER bifunctional catalytic activity in alkaline media. [Display omitted] Accelerating charge transfer efficiency by constructing heterogeneous interfaces on metal-based substrates is an effective way to improve the electrocatalytic performance of materials. However, minimizing the substrate-catalyst interfacial resistance to maximize catalytic activity remains a challenge. This study reports a simple interface engineering strategy for constructing Mo-Ni9S8/Ni3S2 heterostructured nanoflowers. Experimental and theoretical investigations reveal that the primary role assumed by Ni3S2 in Mo-Ni9S8/Ni3S2 heterostructure is to replace nickel foam (NF) substrate for electron conduction, and Ni3S2 has a lower potential energy barrier (0.76 to 1.11 eV) than NF (1.87 eV), resulting in a more effortless electron transfer. The interface between Ni3S2 and Mo-Ni9S8 effectively regulates electron redistribution, and when the electrons from Ni3S2 are transferred to Mo-Ni9S8, the potential energy barriers at the heterogeneous interface are 1.06 eV, lower than that between NF and Ni3S2 (1.53 eV). Mo-Ni9S8/Ni3S2-0.1 exhibited excellent oxygen evolution reaction (OER)/hydrogen evolution reaction (HER) bifunctional catalytic activity in 1 M KOH, with overpotentials of only 223 mV@100 mA cm−2 for OER and 116 mV@10 mA cm−2 for HER. Moreover, when combined with an alkaline electrolytic cell, it required only an ultra-low cell voltage of 1.51 V to drive a current density of 10 mA cm−2. This work provides new inspirations for rationally designing interface engineering for advanced catalytic materials.</description><identifier>ISSN: 0021-9797</identifier><identifier>EISSN: 1095-7103</identifier><identifier>DOI: 10.1016/j.jcis.2022.12.064</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Electrochemical water splitting ; Interface engineering ; Mo-Ni9S8/Ni3S2 ; Multiphase heterostructures ; Potential energy barrier</subject><ispartof>Journal of colloid and interface science, 2023-03, Vol.634, p.563-574</ispartof><rights>2022 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c263t-885f3333cecdd01e26701ffbeda0c642f0868dc2eecce891b843a1d5732b39ad3</citedby><cites>FETCH-LOGICAL-c263t-885f3333cecdd01e26701ffbeda0c642f0868dc2eecce891b843a1d5732b39ad3</cites><orcidid>0000-0003-2008-5032</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021979722022123$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Wang, Liyan</creatorcontrib><creatorcontrib>Xue, Xiangdong</creatorcontrib><creatorcontrib>Luan, Qingjie</creatorcontrib><creatorcontrib>Guo, Junzhen</creatorcontrib><creatorcontrib>Chu, Liang</creatorcontrib><creatorcontrib>Wang, Zhaokun</creatorcontrib><creatorcontrib>Li, Baozhen</creatorcontrib><creatorcontrib>Yang, Mu</creatorcontrib><creatorcontrib>Wang, Ge</creatorcontrib><title>Interface engineering of Mo-doped Ni9S8/Ni3S2 multiphase heterostructure nanoflowers by one step synthesis for efficient overall water splitting</title><title>Journal of colloid and interface science</title><description>Mo-Doped Ni9S8/Ni3S2 multiphase heterostructure nanoflowers were constructed by one-step synthesis. The in-situ derived heterogeneous structure minimized the interfacial resistance between Ni3S2 and the outer layer of Ni9S8, and thus Mo-Ni9S8/Ni3S2-0.1 exhibited excellent OER/HER bifunctional catalytic activity in alkaline media. [Display omitted] Accelerating charge transfer efficiency by constructing heterogeneous interfaces on metal-based substrates is an effective way to improve the electrocatalytic performance of materials. However, minimizing the substrate-catalyst interfacial resistance to maximize catalytic activity remains a challenge. This study reports a simple interface engineering strategy for constructing Mo-Ni9S8/Ni3S2 heterostructured nanoflowers. Experimental and theoretical investigations reveal that the primary role assumed by Ni3S2 in Mo-Ni9S8/Ni3S2 heterostructure is to replace nickel foam (NF) substrate for electron conduction, and Ni3S2 has a lower potential energy barrier (0.76 to 1.11 eV) than NF (1.87 eV), resulting in a more effortless electron transfer. The interface between Ni3S2 and Mo-Ni9S8 effectively regulates electron redistribution, and when the electrons from Ni3S2 are transferred to Mo-Ni9S8, the potential energy barriers at the heterogeneous interface are 1.06 eV, lower than that between NF and Ni3S2 (1.53 eV). Mo-Ni9S8/Ni3S2-0.1 exhibited excellent oxygen evolution reaction (OER)/hydrogen evolution reaction (HER) bifunctional catalytic activity in 1 M KOH, with overpotentials of only 223 mV@100 mA cm−2 for OER and 116 mV@10 mA cm−2 for HER. Moreover, when combined with an alkaline electrolytic cell, it required only an ultra-low cell voltage of 1.51 V to drive a current density of 10 mA cm−2. This work provides new inspirations for rationally designing interface engineering for advanced catalytic materials.</description><subject>Electrochemical water splitting</subject><subject>Interface engineering</subject><subject>Mo-Ni9S8/Ni3S2</subject><subject>Multiphase heterostructures</subject><subject>Potential energy barrier</subject><issn>0021-9797</issn><issn>1095-7103</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kLtOAzEQRS0EEuHxA1QuaXaxvdmXRIMQL4lHAdSWY4-Jo429eLyg_AWfjKNQM800c-7oHkLOOCs5483Fqlxph6VgQpRclKyZ75EZZ31dtJxV-2TGmOBF3_btITlCXDHGeV33M_Lz4BNEqzRQ8B_OA0TnP2iw9CkUJoxg6LPrX7uLZ1e9CrqehuTGpUKgS8hgwBQnnaYI1Csf7BC-ISJdbGjwQDHBSHHj0xLQIbUhUrDWaQc-0fAFUQ0D_VY5h-I4uJTy6xNyYNWAcPq3j8n77c3b9X3x-HL3cH31WGjRVKnoutpWeTRoYxgH0bSMW7sAo5hu5sKyrumMFgBaQ9fzRTevFDd1W4lF1StTHZPzXe4Yw-cEmOTaoYZhUB7ChFK0dceZaEWdT8XuVOe-GMHKMbq1ihvJmdzqlyu51S-3-iUXMuvP0OUOglziy0GUuO2twbgIOkkT3H_4L5OTki0</recordid><startdate>20230315</startdate><enddate>20230315</enddate><creator>Wang, Liyan</creator><creator>Xue, Xiangdong</creator><creator>Luan, Qingjie</creator><creator>Guo, Junzhen</creator><creator>Chu, Liang</creator><creator>Wang, Zhaokun</creator><creator>Li, Baozhen</creator><creator>Yang, Mu</creator><creator>Wang, Ge</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2008-5032</orcidid></search><sort><creationdate>20230315</creationdate><title>Interface engineering of Mo-doped Ni9S8/Ni3S2 multiphase heterostructure nanoflowers by one step synthesis for efficient overall water splitting</title><author>Wang, Liyan ; Xue, Xiangdong ; Luan, Qingjie ; Guo, Junzhen ; Chu, Liang ; Wang, Zhaokun ; Li, Baozhen ; Yang, Mu ; Wang, Ge</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c263t-885f3333cecdd01e26701ffbeda0c642f0868dc2eecce891b843a1d5732b39ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Electrochemical water splitting</topic><topic>Interface engineering</topic><topic>Mo-Ni9S8/Ni3S2</topic><topic>Multiphase heterostructures</topic><topic>Potential energy barrier</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Liyan</creatorcontrib><creatorcontrib>Xue, Xiangdong</creatorcontrib><creatorcontrib>Luan, Qingjie</creatorcontrib><creatorcontrib>Guo, Junzhen</creatorcontrib><creatorcontrib>Chu, Liang</creatorcontrib><creatorcontrib>Wang, Zhaokun</creatorcontrib><creatorcontrib>Li, Baozhen</creatorcontrib><creatorcontrib>Yang, Mu</creatorcontrib><creatorcontrib>Wang, Ge</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of colloid and interface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Liyan</au><au>Xue, Xiangdong</au><au>Luan, Qingjie</au><au>Guo, Junzhen</au><au>Chu, Liang</au><au>Wang, Zhaokun</au><au>Li, Baozhen</au><au>Yang, Mu</au><au>Wang, Ge</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interface engineering of Mo-doped Ni9S8/Ni3S2 multiphase heterostructure nanoflowers by one step synthesis for efficient overall water splitting</atitle><jtitle>Journal of colloid and interface science</jtitle><date>2023-03-15</date><risdate>2023</risdate><volume>634</volume><spage>563</spage><epage>574</epage><pages>563-574</pages><issn>0021-9797</issn><eissn>1095-7103</eissn><abstract>Mo-Doped Ni9S8/Ni3S2 multiphase heterostructure nanoflowers were constructed by one-step synthesis. The in-situ derived heterogeneous structure minimized the interfacial resistance between Ni3S2 and the outer layer of Ni9S8, and thus Mo-Ni9S8/Ni3S2-0.1 exhibited excellent OER/HER bifunctional catalytic activity in alkaline media. [Display omitted] Accelerating charge transfer efficiency by constructing heterogeneous interfaces on metal-based substrates is an effective way to improve the electrocatalytic performance of materials. However, minimizing the substrate-catalyst interfacial resistance to maximize catalytic activity remains a challenge. This study reports a simple interface engineering strategy for constructing Mo-Ni9S8/Ni3S2 heterostructured nanoflowers. Experimental and theoretical investigations reveal that the primary role assumed by Ni3S2 in Mo-Ni9S8/Ni3S2 heterostructure is to replace nickel foam (NF) substrate for electron conduction, and Ni3S2 has a lower potential energy barrier (0.76 to 1.11 eV) than NF (1.87 eV), resulting in a more effortless electron transfer. The interface between Ni3S2 and Mo-Ni9S8 effectively regulates electron redistribution, and when the electrons from Ni3S2 are transferred to Mo-Ni9S8, the potential energy barriers at the heterogeneous interface are 1.06 eV, lower than that between NF and Ni3S2 (1.53 eV). Mo-Ni9S8/Ni3S2-0.1 exhibited excellent oxygen evolution reaction (OER)/hydrogen evolution reaction (HER) bifunctional catalytic activity in 1 M KOH, with overpotentials of only 223 mV@100 mA cm−2 for OER and 116 mV@10 mA cm−2 for HER. Moreover, when combined with an alkaline electrolytic cell, it required only an ultra-low cell voltage of 1.51 V to drive a current density of 10 mA cm−2. This work provides new inspirations for rationally designing interface engineering for advanced catalytic materials.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jcis.2022.12.064</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-2008-5032</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-9797
ispartof Journal of colloid and interface science, 2023-03, Vol.634, p.563-574
issn 0021-9797
1095-7103
language eng
recordid cdi_proquest_miscellaneous_2758102725
source Elsevier ScienceDirect Journals
subjects Electrochemical water splitting
Interface engineering
Mo-Ni9S8/Ni3S2
Multiphase heterostructures
Potential energy barrier
title Interface engineering of Mo-doped Ni9S8/Ni3S2 multiphase heterostructure nanoflowers by one step synthesis for efficient overall water splitting
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T02%3A04%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interface%20engineering%20of%20Mo-doped%20Ni9S8/Ni3S2%20multiphase%20heterostructure%20nanoflowers%20by%20one%20step%20synthesis%20for%20efficient%20overall%20water%20splitting&rft.jtitle=Journal%20of%20colloid%20and%20interface%20science&rft.au=Wang,%20Liyan&rft.date=2023-03-15&rft.volume=634&rft.spage=563&rft.epage=574&rft.pages=563-574&rft.issn=0021-9797&rft.eissn=1095-7103&rft_id=info:doi/10.1016/j.jcis.2022.12.064&rft_dat=%3Cproquest_cross%3E2758102725%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2758102725&rft_id=info:pmid/&rft_els_id=S0021979722022123&rfr_iscdi=true