Electronic liquid-crystal phases of a doped Mott insulator
The character of the ground state of an antiferromagnetic insulator is fundamentally altered following addition of even a small amount of charge 1 . The added charge is concentrated into domain walls across which a π phase shift in the spin correlations of the host material is induced. In two dimens...
Gespeichert in:
Veröffentlicht in: | Nature (London) 1998-06, Vol.393 (6685), p.550-553 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 553 |
---|---|
container_issue | 6685 |
container_start_page | 550 |
container_title | Nature (London) |
container_volume | 393 |
creator | Kivelson, S. A. Fradkin, E. Emery, V. J. |
description | The character of the ground state of an antiferromagnetic insulator is fundamentally altered following addition of even a small amount of charge
1
. The added charge is concentrated into domain walls across which a π phase shift in the spin correlations of the host material is induced. In two dimensions, these domain walls are ‘stripes’ which can be insulating
2
,
3
or conducting
4
,
5
,
6
— that is, metallic ‘rivers’ with their own low-energy degrees of freedom. However, in arrays of one-dimensional metals, which occur in materials such as organic conductors
7
, interactions between stripes typically drive a transition to an insulating ordered charge-density-wave (CDW) state at low temperatures. Here it is shown that such a transition is eliminated if the zero-point energy of transverse stripe fluctuations is sufficiently large compared tothe CDW coupling between stripes. As a consequence, there should exist electronic quantum liquid-crystal phases, which constitute new states of matter, and which can be either high-temperature superconductors or two-dimensional anisotropic ‘metallic’ non-Fermi liquids. Neutron scattering and other experiments in the copper oxide superconductor La
1.6−
x
Nd
0.4
Sr
x
CuO
4
already provide evidence for the existence of these phases in at least one class of materials. |
doi_str_mv | 10.1038/31177 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27581003</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>27581003</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-3794e6544a3aa622123e68c14dbe8130c600a46bae6a70ff0466de789983cb013</originalsourceid><addsrcrecordid>eNpd0MtOwzAQBVALgUQp_YcIAbvA-BHbYYeq8pCK2MA6mjgOpHLj1E4W_XtCW4FgNYs5ujO6hMwo3FDg-pZTqtQRmVChZCqkVsdkAsB0CprLU3IW4woAMqrEhNwtnDV98G1jEtdshqZKTdjGHl3SfWK0MfF1gknlO1slL77vk6aNg8Peh3NyUqOLdnaYU_L-sHibP6XL18fn-f0yNZyrPuUqF1ZmQiBHlIxRxq3UhoqqtJpyMBIAhSzRSlRQ1yCkrKzSea65KYHyKbne53bBbwYb-2LdRGOdw9b6IRZMZZoC8BFe_IMrP4R2_K1gIIRSea5GdLVHJvgYg62LLjRrDNuCQvFdX7Grb3SXhzCMBl0dsDVN_MGM5ZncscNzcdy0Hzb83vyb9wUvUXhD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204477997</pqid></control><display><type>article</type><title>Electronic liquid-crystal phases of a doped Mott insulator</title><source>Springer Nature - Connect here FIRST to enable access</source><source>SpringerLink (Online service)</source><creator>Kivelson, S. A. ; Fradkin, E. ; Emery, V. J.</creator><creatorcontrib>Kivelson, S. A. ; Fradkin, E. ; Emery, V. J.</creatorcontrib><description>The character of the ground state of an antiferromagnetic insulator is fundamentally altered following addition of even a small amount of charge
1
. The added charge is concentrated into domain walls across which a π phase shift in the spin correlations of the host material is induced. In two dimensions, these domain walls are ‘stripes’ which can be insulating
2
,
3
or conducting
4
,
5
,
6
— that is, metallic ‘rivers’ with their own low-energy degrees of freedom. However, in arrays of one-dimensional metals, which occur in materials such as organic conductors
7
, interactions between stripes typically drive a transition to an insulating ordered charge-density-wave (CDW) state at low temperatures. Here it is shown that such a transition is eliminated if the zero-point energy of transverse stripe fluctuations is sufficiently large compared tothe CDW coupling between stripes. As a consequence, there should exist electronic quantum liquid-crystal phases, which constitute new states of matter, and which can be either high-temperature superconductors or two-dimensional anisotropic ‘metallic’ non-Fermi liquids. Neutron scattering and other experiments in the copper oxide superconductor La
1.6−
x
Nd
0.4
Sr
x
CuO
4
already provide evidence for the existence of these phases in at least one class of materials.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/31177</identifier><identifier>CODEN: NATUAS</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Charge-density-wave systems ; Collective effects ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Crystallography ; Electron states ; Exact sciences and technology ; Humanities and Social Sciences ; LCDs ; letter ; Liquid crystal displays ; Metal-insulator transitions and other electronic transitions ; multidisciplinary ; Occurrence, potential candidates ; Physics ; Science ; Science (multidisciplinary) ; Superconductivity</subject><ispartof>Nature (London), 1998-06, Vol.393 (6685), p.550-553</ispartof><rights>Macmillan Magazines Ltd. 1998</rights><rights>1998 INIST-CNRS</rights><rights>Copyright Macmillan Journals Ltd. Jun 11, 1998</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-3794e6544a3aa622123e68c14dbe8130c600a46bae6a70ff0466de789983cb013</citedby><cites>FETCH-LOGICAL-c337t-3794e6544a3aa622123e68c14dbe8130c600a46bae6a70ff0466de789983cb013</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/31177$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/31177$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2295677$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kivelson, S. A.</creatorcontrib><creatorcontrib>Fradkin, E.</creatorcontrib><creatorcontrib>Emery, V. J.</creatorcontrib><title>Electronic liquid-crystal phases of a doped Mott insulator</title><title>Nature (London)</title><addtitle>Nature</addtitle><description>The character of the ground state of an antiferromagnetic insulator is fundamentally altered following addition of even a small amount of charge
1
. The added charge is concentrated into domain walls across which a π phase shift in the spin correlations of the host material is induced. In two dimensions, these domain walls are ‘stripes’ which can be insulating
2
,
3
or conducting
4
,
5
,
6
— that is, metallic ‘rivers’ with their own low-energy degrees of freedom. However, in arrays of one-dimensional metals, which occur in materials such as organic conductors
7
, interactions between stripes typically drive a transition to an insulating ordered charge-density-wave (CDW) state at low temperatures. Here it is shown that such a transition is eliminated if the zero-point energy of transverse stripe fluctuations is sufficiently large compared tothe CDW coupling between stripes. As a consequence, there should exist electronic quantum liquid-crystal phases, which constitute new states of matter, and which can be either high-temperature superconductors or two-dimensional anisotropic ‘metallic’ non-Fermi liquids. Neutron scattering and other experiments in the copper oxide superconductor La
1.6−
x
Nd
0.4
Sr
x
CuO
4
already provide evidence for the existence of these phases in at least one class of materials.</description><subject>Charge-density-wave systems</subject><subject>Collective effects</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Crystallography</subject><subject>Electron states</subject><subject>Exact sciences and technology</subject><subject>Humanities and Social Sciences</subject><subject>LCDs</subject><subject>letter</subject><subject>Liquid crystal displays</subject><subject>Metal-insulator transitions and other electronic transitions</subject><subject>multidisciplinary</subject><subject>Occurrence, potential candidates</subject><subject>Physics</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Superconductivity</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpd0MtOwzAQBVALgUQp_YcIAbvA-BHbYYeq8pCK2MA6mjgOpHLj1E4W_XtCW4FgNYs5ujO6hMwo3FDg-pZTqtQRmVChZCqkVsdkAsB0CprLU3IW4woAMqrEhNwtnDV98G1jEtdshqZKTdjGHl3SfWK0MfF1gknlO1slL77vk6aNg8Peh3NyUqOLdnaYU_L-sHibP6XL18fn-f0yNZyrPuUqF1ZmQiBHlIxRxq3UhoqqtJpyMBIAhSzRSlRQ1yCkrKzSea65KYHyKbne53bBbwYb-2LdRGOdw9b6IRZMZZoC8BFe_IMrP4R2_K1gIIRSea5GdLVHJvgYg62LLjRrDNuCQvFdX7Grb3SXhzCMBl0dsDVN_MGM5ZncscNzcdy0Hzb83vyb9wUvUXhD</recordid><startdate>19980611</startdate><enddate>19980611</enddate><creator>Kivelson, S. A.</creator><creator>Fradkin, E.</creator><creator>Emery, V. J.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing</general><general>Nature Publishing Group</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>19980611</creationdate><title>Electronic liquid-crystal phases of a doped Mott insulator</title><author>Kivelson, S. A. ; Fradkin, E. ; Emery, V. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-3794e6544a3aa622123e68c14dbe8130c600a46bae6a70ff0466de789983cb013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Charge-density-wave systems</topic><topic>Collective effects</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Crystallography</topic><topic>Electron states</topic><topic>Exact sciences and technology</topic><topic>Humanities and Social Sciences</topic><topic>LCDs</topic><topic>letter</topic><topic>Liquid crystal displays</topic><topic>Metal-insulator transitions and other electronic transitions</topic><topic>multidisciplinary</topic><topic>Occurrence, potential candidates</topic><topic>Physics</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Superconductivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kivelson, S. A.</creatorcontrib><creatorcontrib>Fradkin, E.</creatorcontrib><creatorcontrib>Emery, V. J.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>ProQuest Nursing and Allied Health Journals</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Proquest Health & Medical Complete</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>Agriculture Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>ProQuest Research Library</collection><collection>Science Database (ProQuest)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>ProQuest Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kivelson, S. A.</au><au>Fradkin, E.</au><au>Emery, V. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electronic liquid-crystal phases of a doped Mott insulator</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><date>1998-06-11</date><risdate>1998</risdate><volume>393</volume><issue>6685</issue><spage>550</spage><epage>553</epage><pages>550-553</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><coden>NATUAS</coden><abstract>The character of the ground state of an antiferromagnetic insulator is fundamentally altered following addition of even a small amount of charge
1
. The added charge is concentrated into domain walls across which a π phase shift in the spin correlations of the host material is induced. In two dimensions, these domain walls are ‘stripes’ which can be insulating
2
,
3
or conducting
4
,
5
,
6
— that is, metallic ‘rivers’ with their own low-energy degrees of freedom. However, in arrays of one-dimensional metals, which occur in materials such as organic conductors
7
, interactions between stripes typically drive a transition to an insulating ordered charge-density-wave (CDW) state at low temperatures. Here it is shown that such a transition is eliminated if the zero-point energy of transverse stripe fluctuations is sufficiently large compared tothe CDW coupling between stripes. As a consequence, there should exist electronic quantum liquid-crystal phases, which constitute new states of matter, and which can be either high-temperature superconductors or two-dimensional anisotropic ‘metallic’ non-Fermi liquids. Neutron scattering and other experiments in the copper oxide superconductor La
1.6−
x
Nd
0.4
Sr
x
CuO
4
already provide evidence for the existence of these phases in at least one class of materials.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/31177</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 1998-06, Vol.393 (6685), p.550-553 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_proquest_miscellaneous_27581003 |
source | Springer Nature - Connect here FIRST to enable access; SpringerLink (Online service) |
subjects | Charge-density-wave systems Collective effects Condensed matter: electronic structure, electrical, magnetic, and optical properties Crystallography Electron states Exact sciences and technology Humanities and Social Sciences LCDs letter Liquid crystal displays Metal-insulator transitions and other electronic transitions multidisciplinary Occurrence, potential candidates Physics Science Science (multidisciplinary) Superconductivity |
title | Electronic liquid-crystal phases of a doped Mott insulator |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T07%3A51%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electronic%20liquid-crystal%20phases%20of%20a%20doped%20Mott%20insulator&rft.jtitle=Nature%20(London)&rft.au=Kivelson,%20S.%20A.&rft.date=1998-06-11&rft.volume=393&rft.issue=6685&rft.spage=550&rft.epage=553&rft.pages=550-553&rft.issn=0028-0836&rft.eissn=1476-4687&rft.coden=NATUAS&rft_id=info:doi/10.1038/31177&rft_dat=%3Cproquest_cross%3E27581003%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=204477997&rft_id=info:pmid/&rfr_iscdi=true |