Mechanochemical synthesis and sintering behaviour of magnesium aluminate spinel

X-ray amorphous precursor phases for the synthesis of spinel (MgAl2O4) have been prepared by grinding mixtures of gibbsite (Al(OH)3) with brucite (Mg(OH)2) or hydromagnesite (4MgCO3·Mg(OH)2·4H2O). The mechanochemical treatment does not remove any water or carbonate, but converts some of the gibbsite...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science 2000-11, Vol.35 (22), p.5529-5535
Hauptverfasser: MACKENZIE, K. J. D, TEMUUJIN, J, JADAMBAA, Ts, SMITH, M. E, ANGERER, P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5535
container_issue 22
container_start_page 5529
container_title Journal of materials science
container_volume 35
creator MACKENZIE, K. J. D
TEMUUJIN, J
JADAMBAA, Ts
SMITH, M. E
ANGERER, P
description X-ray amorphous precursor phases for the synthesis of spinel (MgAl2O4) have been prepared by grinding mixtures of gibbsite (Al(OH)3) with brucite (Mg(OH)2) or hydromagnesite (4MgCO3·Mg(OH)2·4H2O). The mechanochemical treatment does not remove any water or carbonate, but converts some of the gibbsite octahedral Al sites into tetrahedral sites and other sites with a 27Al MAS NMR resonance at about 38 ppm. The brucite-derived precursor forms spinel on heating at ≤850°C, by contrast with unground mixtures which show little spinel formation even at 1250°C. The hydromagnesite-derived precursor transforms at about 850°C into a mixture of spinel and hydrotalcite (Mg6Al2(OH)16CO3·4H2O), the latter decomposing to spinel and MgO by 1050°C. Spinel derived from the hydromagnesite-containing precursor shows superior pressureless sintering properties at 1400–1600°C, producing a body of 97% theoretical bulk density at 1600°C. Under the same conditions, the brucite-derived spinel sintered to 72% theoretical density and showed a morphology consisting of widely disparate grain sizes.
doi_str_mv 10.1023/A:1004839108758
format Article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_27568891</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>27545034</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-5778b4ca36db0e1b379c30ae1212bd3f9ea252ed39e0c82095f53bd137cf36393</originalsourceid><addsrcrecordid>eNqN0M9LwzAcBfAgCs7p2WtA8Fb9Jt-kSbyN4S-Y7KLnkqbpltGms2mF_fcW9KKnnd7lw4P3CLlmcMeA4_3igQEIjYaBVlKfkBmTCjOhAU_JDIDzjIucnZOLlHYAIBVnM7J-825rY-e2vg3ONjQd4rD1KSRqY0VTiIPvQ9zQ0m_tV-jGnnY1be0mTmZsqW3GNkQ7eJr2IfrmkpzVtkn-6jfn5OPp8X35kq3Wz6_LxSpzKPSQSaV0KZzFvCrBsxKVcQjWM854WWFtvOWS-wqNB6c5GFlLLCuGytWYo8E5uf3p3ffd5-jTULQhOd80NvpuTAVXMtfasGOgNJznx0AhAcUEb_7B3XRLnNYWnEtjQLA_yqbp17q30YVU7PvQ2v5QaJZLofAbtSuFrw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259904134</pqid></control><display><type>article</type><title>Mechanochemical synthesis and sintering behaviour of magnesium aluminate spinel</title><source>SpringerNature Journals</source><creator>MACKENZIE, K. J. D ; TEMUUJIN, J ; JADAMBAA, Ts ; SMITH, M. E ; ANGERER, P</creator><contributor>WCA</contributor><creatorcontrib>MACKENZIE, K. J. D ; TEMUUJIN, J ; JADAMBAA, Ts ; SMITH, M. E ; ANGERER, P ; WCA</creatorcontrib><description>X-ray amorphous precursor phases for the synthesis of spinel (MgAl2O4) have been prepared by grinding mixtures of gibbsite (Al(OH)3) with brucite (Mg(OH)2) or hydromagnesite (4MgCO3·Mg(OH)2·4H2O). The mechanochemical treatment does not remove any water or carbonate, but converts some of the gibbsite octahedral Al sites into tetrahedral sites and other sites with a 27Al MAS NMR resonance at about 38 ppm. The brucite-derived precursor forms spinel on heating at ≤850°C, by contrast with unground mixtures which show little spinel formation even at 1250°C. The hydromagnesite-derived precursor transforms at about 850°C into a mixture of spinel and hydrotalcite (Mg6Al2(OH)16CO3·4H2O), the latter decomposing to spinel and MgO by 1050°C. Spinel derived from the hydromagnesite-containing precursor shows superior pressureless sintering properties at 1400–1600°C, producing a body of 97% theoretical bulk density at 1600°C. Under the same conditions, the brucite-derived spinel sintered to 72% theoretical density and showed a morphology consisting of widely disparate grain sizes.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1023/A:1004839108758</identifier><identifier>CODEN: JMTSAS</identifier><language>eng</language><publisher>Heidelberg: Springer</publisher><subject>Aluminum ; Applied sciences ; Basic magnesium carbonate ; Basic refractories ; Bayer process ; Brucite ; Building materials. Ceramics. Glasses ; Bulk density ; Chemical industry and chemicals ; Exact sciences and technology ; Gibbsite ; Grain size ; Loose powder sintering ; Magnesium aluminate ; Magnesium hydroxide ; Materials science ; Morphology ; NMR spectroscopy ; Precursors ; Refractory products ; Spinel ; Synthesis ; Theoretical density</subject><ispartof>Journal of materials science, 2000-11, Vol.35 (22), p.5529-5535</ispartof><rights>2001 INIST-CNRS</rights><rights>Journal of Materials Science is a copyright of Springer, (2000). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c348t-5778b4ca36db0e1b379c30ae1212bd3f9ea252ed39e0c82095f53bd137cf36393</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=816547$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><contributor>WCA</contributor><creatorcontrib>MACKENZIE, K. J. D</creatorcontrib><creatorcontrib>TEMUUJIN, J</creatorcontrib><creatorcontrib>JADAMBAA, Ts</creatorcontrib><creatorcontrib>SMITH, M. E</creatorcontrib><creatorcontrib>ANGERER, P</creatorcontrib><title>Mechanochemical synthesis and sintering behaviour of magnesium aluminate spinel</title><title>Journal of materials science</title><description>X-ray amorphous precursor phases for the synthesis of spinel (MgAl2O4) have been prepared by grinding mixtures of gibbsite (Al(OH)3) with brucite (Mg(OH)2) or hydromagnesite (4MgCO3·Mg(OH)2·4H2O). The mechanochemical treatment does not remove any water or carbonate, but converts some of the gibbsite octahedral Al sites into tetrahedral sites and other sites with a 27Al MAS NMR resonance at about 38 ppm. The brucite-derived precursor forms spinel on heating at ≤850°C, by contrast with unground mixtures which show little spinel formation even at 1250°C. The hydromagnesite-derived precursor transforms at about 850°C into a mixture of spinel and hydrotalcite (Mg6Al2(OH)16CO3·4H2O), the latter decomposing to spinel and MgO by 1050°C. Spinel derived from the hydromagnesite-containing precursor shows superior pressureless sintering properties at 1400–1600°C, producing a body of 97% theoretical bulk density at 1600°C. Under the same conditions, the brucite-derived spinel sintered to 72% theoretical density and showed a morphology consisting of widely disparate grain sizes.</description><subject>Aluminum</subject><subject>Applied sciences</subject><subject>Basic magnesium carbonate</subject><subject>Basic refractories</subject><subject>Bayer process</subject><subject>Brucite</subject><subject>Building materials. Ceramics. Glasses</subject><subject>Bulk density</subject><subject>Chemical industry and chemicals</subject><subject>Exact sciences and technology</subject><subject>Gibbsite</subject><subject>Grain size</subject><subject>Loose powder sintering</subject><subject>Magnesium aluminate</subject><subject>Magnesium hydroxide</subject><subject>Materials science</subject><subject>Morphology</subject><subject>NMR spectroscopy</subject><subject>Precursors</subject><subject>Refractory products</subject><subject>Spinel</subject><subject>Synthesis</subject><subject>Theoretical density</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqN0M9LwzAcBfAgCs7p2WtA8Fb9Jt-kSbyN4S-Y7KLnkqbpltGms2mF_fcW9KKnnd7lw4P3CLlmcMeA4_3igQEIjYaBVlKfkBmTCjOhAU_JDIDzjIucnZOLlHYAIBVnM7J-825rY-e2vg3ONjQd4rD1KSRqY0VTiIPvQ9zQ0m_tV-jGnnY1be0mTmZsqW3GNkQ7eJr2IfrmkpzVtkn-6jfn5OPp8X35kq3Wz6_LxSpzKPSQSaV0KZzFvCrBsxKVcQjWM854WWFtvOWS-wqNB6c5GFlLLCuGytWYo8E5uf3p3ffd5-jTULQhOd80NvpuTAVXMtfasGOgNJznx0AhAcUEb_7B3XRLnNYWnEtjQLA_yqbp17q30YVU7PvQ2v5QaJZLofAbtSuFrw</recordid><startdate>20001101</startdate><enddate>20001101</enddate><creator>MACKENZIE, K. J. D</creator><creator>TEMUUJIN, J</creator><creator>JADAMBAA, Ts</creator><creator>SMITH, M. E</creator><creator>ANGERER, P</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><scope>7SP</scope><scope>L7M</scope><scope>7QQ</scope></search><sort><creationdate>20001101</creationdate><title>Mechanochemical synthesis and sintering behaviour of magnesium aluminate spinel</title><author>MACKENZIE, K. J. D ; TEMUUJIN, J ; JADAMBAA, Ts ; SMITH, M. E ; ANGERER, P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-5778b4ca36db0e1b379c30ae1212bd3f9ea252ed39e0c82095f53bd137cf36393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Aluminum</topic><topic>Applied sciences</topic><topic>Basic magnesium carbonate</topic><topic>Basic refractories</topic><topic>Bayer process</topic><topic>Brucite</topic><topic>Building materials. Ceramics. Glasses</topic><topic>Bulk density</topic><topic>Chemical industry and chemicals</topic><topic>Exact sciences and technology</topic><topic>Gibbsite</topic><topic>Grain size</topic><topic>Loose powder sintering</topic><topic>Magnesium aluminate</topic><topic>Magnesium hydroxide</topic><topic>Materials science</topic><topic>Morphology</topic><topic>NMR spectroscopy</topic><topic>Precursors</topic><topic>Refractory products</topic><topic>Spinel</topic><topic>Synthesis</topic><topic>Theoretical density</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>MACKENZIE, K. J. D</creatorcontrib><creatorcontrib>TEMUUJIN, J</creatorcontrib><creatorcontrib>JADAMBAA, Ts</creatorcontrib><creatorcontrib>SMITH, M. E</creatorcontrib><creatorcontrib>ANGERER, P</creatorcontrib><collection>Pascal-Francis</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Ceramic Abstracts</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>MACKENZIE, K. J. D</au><au>TEMUUJIN, J</au><au>JADAMBAA, Ts</au><au>SMITH, M. E</au><au>ANGERER, P</au><au>WCA</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanochemical synthesis and sintering behaviour of magnesium aluminate spinel</atitle><jtitle>Journal of materials science</jtitle><date>2000-11-01</date><risdate>2000</risdate><volume>35</volume><issue>22</issue><spage>5529</spage><epage>5535</epage><pages>5529-5535</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><coden>JMTSAS</coden><abstract>X-ray amorphous precursor phases for the synthesis of spinel (MgAl2O4) have been prepared by grinding mixtures of gibbsite (Al(OH)3) with brucite (Mg(OH)2) or hydromagnesite (4MgCO3·Mg(OH)2·4H2O). The mechanochemical treatment does not remove any water or carbonate, but converts some of the gibbsite octahedral Al sites into tetrahedral sites and other sites with a 27Al MAS NMR resonance at about 38 ppm. The brucite-derived precursor forms spinel on heating at ≤850°C, by contrast with unground mixtures which show little spinel formation even at 1250°C. The hydromagnesite-derived precursor transforms at about 850°C into a mixture of spinel and hydrotalcite (Mg6Al2(OH)16CO3·4H2O), the latter decomposing to spinel and MgO by 1050°C. Spinel derived from the hydromagnesite-containing precursor shows superior pressureless sintering properties at 1400–1600°C, producing a body of 97% theoretical bulk density at 1600°C. Under the same conditions, the brucite-derived spinel sintered to 72% theoretical density and showed a morphology consisting of widely disparate grain sizes.</abstract><cop>Heidelberg</cop><pub>Springer</pub><doi>10.1023/A:1004839108758</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2461
ispartof Journal of materials science, 2000-11, Vol.35 (22), p.5529-5535
issn 0022-2461
1573-4803
language eng
recordid cdi_proquest_miscellaneous_27568891
source SpringerNature Journals
subjects Aluminum
Applied sciences
Basic magnesium carbonate
Basic refractories
Bayer process
Brucite
Building materials. Ceramics. Glasses
Bulk density
Chemical industry and chemicals
Exact sciences and technology
Gibbsite
Grain size
Loose powder sintering
Magnesium aluminate
Magnesium hydroxide
Materials science
Morphology
NMR spectroscopy
Precursors
Refractory products
Spinel
Synthesis
Theoretical density
title Mechanochemical synthesis and sintering behaviour of magnesium aluminate spinel
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T22%3A10%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanochemical%20synthesis%20and%20sintering%20behaviour%20of%20magnesium%20aluminate%20spinel&rft.jtitle=Journal%20of%20materials%20science&rft.au=MACKENZIE,%20K.%20J.%20D&rft.date=2000-11-01&rft.volume=35&rft.issue=22&rft.spage=5529&rft.epage=5535&rft.pages=5529-5535&rft.issn=0022-2461&rft.eissn=1573-4803&rft.coden=JMTSAS&rft_id=info:doi/10.1023/A:1004839108758&rft_dat=%3Cproquest_pasca%3E27545034%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2259904134&rft_id=info:pmid/&rfr_iscdi=true