Photoliquefiable Azobenzene Surfactants toward Solar Thermal Fuels that Upgrade Photon Energy Storage via Molecular Design
Photoresponsive phase change materials (PPCMs) are capable of storing photon and heat energy simultaneously and releasing the stored energy as heat in a controllable way. While, the azobenzene‐based PPCMs exhibit a contradiction between gravimetric energy storage density and photoinduced phase chang...
Gespeichert in:
Veröffentlicht in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2023-03, Vol.19 (10), p.e2206623-n/a |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 10 |
container_start_page | e2206623 |
container_title | Small (Weinheim an der Bergstrasse, Germany) |
container_volume | 19 |
creator | Zhang, Lei Liu, Han Du, Qianyao Zhang, Guoqiang Zhu, Shanhui Wu, Zhongtao Luo, Xiliang |
description | Photoresponsive phase change materials (PPCMs) are capable of storing photon and heat energy simultaneously and releasing the stored energy as heat in a controllable way. While, the azobenzene‐based PPCMs exhibit a contradiction between gravimetric energy storage density and photoinduced phase change. Here, a type of azobenzene surfactants with balance between molecular free volume and intermolecular interaction is designed in molecular level, which can address the coharvest of photon energy and low‐grade heat energy at room temperature. Such PPCMs gain the total gravimetric energy density up to 131.18 J g−1 by charging solid sample and 160.50 J g−1 by charging solution. Notably, the molar isomerization enthalpy upgrades by a factor of up to 2.4 compared to azobenzene. The working mechanism is explained by the computational studies. All the stored energy can release out as heat under Vis light, causing a fast surface temperature rise. This study demonstrates a new molecular designing strategy for developing azobenzene‐based PPCMs with high gravimetric energy density by improving the photon energy storage.
A good balance between molecular free volume and intermolecular interaction for azobenzene‐containing surfactants is realized in molecular level, which leads to solar thermal fuels addressing the coharvest of photon energy and low‐grade heat energy at room temperature. This study provides a molecular designing strategy for developing solar thermal fuels with high gravimetric energy density by improving the photon energy storage. |
doi_str_mv | 10.1002/smll.202206623 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2756124267</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2785181364</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3733-7b63b4522322331c5a32eda9fba31a1db0763b19a954cc64d529c43f815d129a3</originalsourceid><addsrcrecordid>eNqFkd9r2zAQx8XYWH9sr3scgr7sJZmks2X7sXRpO0hpIe2zOcvnxEW2UsleSf76KU2XQl8GghPocx9O92XsmxRTKYT6GTprp0ooJbRW8IEdSy1honNVfDzcpThiJyE8CgFSJdlndgQ6hSQHOGbbu5UbnG2fRmparCzx862rqN9ST3wx-gbNgP0Q-OCe0dd84Sx6fr8i36HllyPZ-LTCgT-slx5r4i--ns968ssNXwzO45L4nxb5jbNkxl37Lwrtsv_CPjVoA319rafs4XJ2f3E9md9e_b44n08MZACTrNJQJalSEA9IkyIoqrFoKgSJsq5EFgFZYJEmxuikTlVhEmhymdZSFQin7Mfeu_YufjMMZdcGQ9ZiT24MpcpSHfeidBbRs3fooxt9H6eLVJ7KXIJOIjXdU8a7EDw15dq3HfpNKUW5S6XcpVIeUokN31-1Y9VRfcD_xRCBYg88t5Y2_9GVi5v5_E3-F0fHmeA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2785181364</pqid></control><display><type>article</type><title>Photoliquefiable Azobenzene Surfactants toward Solar Thermal Fuels that Upgrade Photon Energy Storage via Molecular Design</title><source>Wiley Online Library All Journals</source><creator>Zhang, Lei ; Liu, Han ; Du, Qianyao ; Zhang, Guoqiang ; Zhu, Shanhui ; Wu, Zhongtao ; Luo, Xiliang</creator><creatorcontrib>Zhang, Lei ; Liu, Han ; Du, Qianyao ; Zhang, Guoqiang ; Zhu, Shanhui ; Wu, Zhongtao ; Luo, Xiliang</creatorcontrib><description>Photoresponsive phase change materials (PPCMs) are capable of storing photon and heat energy simultaneously and releasing the stored energy as heat in a controllable way. While, the azobenzene‐based PPCMs exhibit a contradiction between gravimetric energy storage density and photoinduced phase change. Here, a type of azobenzene surfactants with balance between molecular free volume and intermolecular interaction is designed in molecular level, which can address the coharvest of photon energy and low‐grade heat energy at room temperature. Such PPCMs gain the total gravimetric energy density up to 131.18 J g−1 by charging solid sample and 160.50 J g−1 by charging solution. Notably, the molar isomerization enthalpy upgrades by a factor of up to 2.4 compared to azobenzene. The working mechanism is explained by the computational studies. All the stored energy can release out as heat under Vis light, causing a fast surface temperature rise. This study demonstrates a new molecular designing strategy for developing azobenzene‐based PPCMs with high gravimetric energy density by improving the photon energy storage.
A good balance between molecular free volume and intermolecular interaction for azobenzene‐containing surfactants is realized in molecular level, which leads to solar thermal fuels addressing the coharvest of photon energy and low‐grade heat energy at room temperature. This study provides a molecular designing strategy for developing solar thermal fuels with high gravimetric energy density by improving the photon energy storage.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202206623</identifier><identifier>PMID: 36534833</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Azo compounds ; azobenzene surfactant ; Charging ; Controllability ; Energy storage ; Enthalpy ; Heat ; Internal energy ; Isomerization ; micelles ; Nanotechnology ; Phase change materials ; photon energy storage ; Photons ; Room temperature ; Solar heating ; solar thermal fuels ; Surfactants</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2023-03, Vol.19 (10), p.e2206623-n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><rights>2022 Wiley-VCH GmbH.</rights><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3733-7b63b4522322331c5a32eda9fba31a1db0763b19a954cc64d529c43f815d129a3</citedby><cites>FETCH-LOGICAL-c3733-7b63b4522322331c5a32eda9fba31a1db0763b19a954cc64d529c43f815d129a3</cites><orcidid>0000-0001-7991-0194</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202206623$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202206623$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36534833$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Lei</creatorcontrib><creatorcontrib>Liu, Han</creatorcontrib><creatorcontrib>Du, Qianyao</creatorcontrib><creatorcontrib>Zhang, Guoqiang</creatorcontrib><creatorcontrib>Zhu, Shanhui</creatorcontrib><creatorcontrib>Wu, Zhongtao</creatorcontrib><creatorcontrib>Luo, Xiliang</creatorcontrib><title>Photoliquefiable Azobenzene Surfactants toward Solar Thermal Fuels that Upgrade Photon Energy Storage via Molecular Design</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Photoresponsive phase change materials (PPCMs) are capable of storing photon and heat energy simultaneously and releasing the stored energy as heat in a controllable way. While, the azobenzene‐based PPCMs exhibit a contradiction between gravimetric energy storage density and photoinduced phase change. Here, a type of azobenzene surfactants with balance between molecular free volume and intermolecular interaction is designed in molecular level, which can address the coharvest of photon energy and low‐grade heat energy at room temperature. Such PPCMs gain the total gravimetric energy density up to 131.18 J g−1 by charging solid sample and 160.50 J g−1 by charging solution. Notably, the molar isomerization enthalpy upgrades by a factor of up to 2.4 compared to azobenzene. The working mechanism is explained by the computational studies. All the stored energy can release out as heat under Vis light, causing a fast surface temperature rise. This study demonstrates a new molecular designing strategy for developing azobenzene‐based PPCMs with high gravimetric energy density by improving the photon energy storage.
A good balance between molecular free volume and intermolecular interaction for azobenzene‐containing surfactants is realized in molecular level, which leads to solar thermal fuels addressing the coharvest of photon energy and low‐grade heat energy at room temperature. This study provides a molecular designing strategy for developing solar thermal fuels with high gravimetric energy density by improving the photon energy storage.</description><subject>Azo compounds</subject><subject>azobenzene surfactant</subject><subject>Charging</subject><subject>Controllability</subject><subject>Energy storage</subject><subject>Enthalpy</subject><subject>Heat</subject><subject>Internal energy</subject><subject>Isomerization</subject><subject>micelles</subject><subject>Nanotechnology</subject><subject>Phase change materials</subject><subject>photon energy storage</subject><subject>Photons</subject><subject>Room temperature</subject><subject>Solar heating</subject><subject>solar thermal fuels</subject><subject>Surfactants</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkd9r2zAQx8XYWH9sr3scgr7sJZmks2X7sXRpO0hpIe2zOcvnxEW2UsleSf76KU2XQl8GghPocx9O92XsmxRTKYT6GTprp0ooJbRW8IEdSy1honNVfDzcpThiJyE8CgFSJdlndgQ6hSQHOGbbu5UbnG2fRmparCzx862rqN9ST3wx-gbNgP0Q-OCe0dd84Sx6fr8i36HllyPZ-LTCgT-slx5r4i--ns968ssNXwzO45L4nxb5jbNkxl37Lwrtsv_CPjVoA319rafs4XJ2f3E9md9e_b44n08MZACTrNJQJalSEA9IkyIoqrFoKgSJsq5EFgFZYJEmxuikTlVhEmhymdZSFQin7Mfeu_YufjMMZdcGQ9ZiT24MpcpSHfeidBbRs3fooxt9H6eLVJ7KXIJOIjXdU8a7EDw15dq3HfpNKUW5S6XcpVIeUokN31-1Y9VRfcD_xRCBYg88t5Y2_9GVi5v5_E3-F0fHmeA</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Zhang, Lei</creator><creator>Liu, Han</creator><creator>Du, Qianyao</creator><creator>Zhang, Guoqiang</creator><creator>Zhu, Shanhui</creator><creator>Wu, Zhongtao</creator><creator>Luo, Xiliang</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7991-0194</orcidid></search><sort><creationdate>20230301</creationdate><title>Photoliquefiable Azobenzene Surfactants toward Solar Thermal Fuels that Upgrade Photon Energy Storage via Molecular Design</title><author>Zhang, Lei ; Liu, Han ; Du, Qianyao ; Zhang, Guoqiang ; Zhu, Shanhui ; Wu, Zhongtao ; Luo, Xiliang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3733-7b63b4522322331c5a32eda9fba31a1db0763b19a954cc64d529c43f815d129a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Azo compounds</topic><topic>azobenzene surfactant</topic><topic>Charging</topic><topic>Controllability</topic><topic>Energy storage</topic><topic>Enthalpy</topic><topic>Heat</topic><topic>Internal energy</topic><topic>Isomerization</topic><topic>micelles</topic><topic>Nanotechnology</topic><topic>Phase change materials</topic><topic>photon energy storage</topic><topic>Photons</topic><topic>Room temperature</topic><topic>Solar heating</topic><topic>solar thermal fuels</topic><topic>Surfactants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Lei</creatorcontrib><creatorcontrib>Liu, Han</creatorcontrib><creatorcontrib>Du, Qianyao</creatorcontrib><creatorcontrib>Zhang, Guoqiang</creatorcontrib><creatorcontrib>Zhu, Shanhui</creatorcontrib><creatorcontrib>Wu, Zhongtao</creatorcontrib><creatorcontrib>Luo, Xiliang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Lei</au><au>Liu, Han</au><au>Du, Qianyao</au><au>Zhang, Guoqiang</au><au>Zhu, Shanhui</au><au>Wu, Zhongtao</au><au>Luo, Xiliang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photoliquefiable Azobenzene Surfactants toward Solar Thermal Fuels that Upgrade Photon Energy Storage via Molecular Design</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2023-03-01</date><risdate>2023</risdate><volume>19</volume><issue>10</issue><spage>e2206623</spage><epage>n/a</epage><pages>e2206623-n/a</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Photoresponsive phase change materials (PPCMs) are capable of storing photon and heat energy simultaneously and releasing the stored energy as heat in a controllable way. While, the azobenzene‐based PPCMs exhibit a contradiction between gravimetric energy storage density and photoinduced phase change. Here, a type of azobenzene surfactants with balance between molecular free volume and intermolecular interaction is designed in molecular level, which can address the coharvest of photon energy and low‐grade heat energy at room temperature. Such PPCMs gain the total gravimetric energy density up to 131.18 J g−1 by charging solid sample and 160.50 J g−1 by charging solution. Notably, the molar isomerization enthalpy upgrades by a factor of up to 2.4 compared to azobenzene. The working mechanism is explained by the computational studies. All the stored energy can release out as heat under Vis light, causing a fast surface temperature rise. This study demonstrates a new molecular designing strategy for developing azobenzene‐based PPCMs with high gravimetric energy density by improving the photon energy storage.
A good balance between molecular free volume and intermolecular interaction for azobenzene‐containing surfactants is realized in molecular level, which leads to solar thermal fuels addressing the coharvest of photon energy and low‐grade heat energy at room temperature. This study provides a molecular designing strategy for developing solar thermal fuels with high gravimetric energy density by improving the photon energy storage.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>36534833</pmid><doi>10.1002/smll.202206623</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-7991-0194</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1613-6810 |
ispartof | Small (Weinheim an der Bergstrasse, Germany), 2023-03, Vol.19 (10), p.e2206623-n/a |
issn | 1613-6810 1613-6829 |
language | eng |
recordid | cdi_proquest_miscellaneous_2756124267 |
source | Wiley Online Library All Journals |
subjects | Azo compounds azobenzene surfactant Charging Controllability Energy storage Enthalpy Heat Internal energy Isomerization micelles Nanotechnology Phase change materials photon energy storage Photons Room temperature Solar heating solar thermal fuels Surfactants |
title | Photoliquefiable Azobenzene Surfactants toward Solar Thermal Fuels that Upgrade Photon Energy Storage via Molecular Design |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T17%3A22%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photoliquefiable%20Azobenzene%20Surfactants%20toward%20Solar%20Thermal%20Fuels%20that%20Upgrade%20Photon%20Energy%20Storage%20via%20Molecular%20Design&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Zhang,%20Lei&rft.date=2023-03-01&rft.volume=19&rft.issue=10&rft.spage=e2206623&rft.epage=n/a&rft.pages=e2206623-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202206623&rft_dat=%3Cproquest_cross%3E2785181364%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2785181364&rft_id=info:pmid/36534833&rfr_iscdi=true |