Photoliquefiable Azobenzene Surfactants toward Solar Thermal Fuels that Upgrade Photon Energy Storage via Molecular Design

Photoresponsive phase change materials (PPCMs) are capable of storing photon and heat energy simultaneously and releasing the stored energy as heat in a controllable way. While, the azobenzene‐based PPCMs exhibit a contradiction between gravimetric energy storage density and photoinduced phase chang...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2023-03, Vol.19 (10), p.e2206623-n/a
Hauptverfasser: Zhang, Lei, Liu, Han, Du, Qianyao, Zhang, Guoqiang, Zhu, Shanhui, Wu, Zhongtao, Luo, Xiliang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 10
container_start_page e2206623
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 19
creator Zhang, Lei
Liu, Han
Du, Qianyao
Zhang, Guoqiang
Zhu, Shanhui
Wu, Zhongtao
Luo, Xiliang
description Photoresponsive phase change materials (PPCMs) are capable of storing photon and heat energy simultaneously and releasing the stored energy as heat in a controllable way. While, the azobenzene‐based PPCMs exhibit a contradiction between gravimetric energy storage density and photoinduced phase change. Here, a type of azobenzene surfactants with balance between molecular free volume and intermolecular interaction is designed in molecular level, which can address the coharvest of photon energy and low‐grade heat energy at room temperature. Such PPCMs gain the total gravimetric energy density up to 131.18 J g−1 by charging solid sample and 160.50 J g−1 by charging solution. Notably, the molar isomerization enthalpy upgrades by a factor of up to 2.4 compared to azobenzene. The working mechanism is explained by the computational studies. All the stored energy can release out as heat under Vis light, causing a fast surface temperature rise. This study demonstrates a new molecular designing strategy for developing azobenzene‐based PPCMs with high gravimetric energy density by improving the photon energy storage. A good balance between molecular free volume and intermolecular interaction for azobenzene‐containing surfactants is realized in molecular level, which leads to solar thermal fuels addressing the coharvest of photon energy and low‐grade heat energy at room temperature. This study provides a molecular designing strategy for developing solar thermal fuels with high gravimetric energy density by improving the photon energy storage.
doi_str_mv 10.1002/smll.202206623
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2756124267</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2785181364</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3733-7b63b4522322331c5a32eda9fba31a1db0763b19a954cc64d529c43f815d129a3</originalsourceid><addsrcrecordid>eNqFkd9r2zAQx8XYWH9sr3scgr7sJZmks2X7sXRpO0hpIe2zOcvnxEW2UsleSf76KU2XQl8GghPocx9O92XsmxRTKYT6GTprp0ooJbRW8IEdSy1honNVfDzcpThiJyE8CgFSJdlndgQ6hSQHOGbbu5UbnG2fRmparCzx862rqN9ST3wx-gbNgP0Q-OCe0dd84Sx6fr8i36HllyPZ-LTCgT-slx5r4i--ns968ssNXwzO45L4nxb5jbNkxl37Lwrtsv_CPjVoA319rafs4XJ2f3E9md9e_b44n08MZACTrNJQJalSEA9IkyIoqrFoKgSJsq5EFgFZYJEmxuikTlVhEmhymdZSFQin7Mfeu_YufjMMZdcGQ9ZiT24MpcpSHfeidBbRs3fooxt9H6eLVJ7KXIJOIjXdU8a7EDw15dq3HfpNKUW5S6XcpVIeUokN31-1Y9VRfcD_xRCBYg88t5Y2_9GVi5v5_E3-F0fHmeA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2785181364</pqid></control><display><type>article</type><title>Photoliquefiable Azobenzene Surfactants toward Solar Thermal Fuels that Upgrade Photon Energy Storage via Molecular Design</title><source>Wiley Online Library All Journals</source><creator>Zhang, Lei ; Liu, Han ; Du, Qianyao ; Zhang, Guoqiang ; Zhu, Shanhui ; Wu, Zhongtao ; Luo, Xiliang</creator><creatorcontrib>Zhang, Lei ; Liu, Han ; Du, Qianyao ; Zhang, Guoqiang ; Zhu, Shanhui ; Wu, Zhongtao ; Luo, Xiliang</creatorcontrib><description>Photoresponsive phase change materials (PPCMs) are capable of storing photon and heat energy simultaneously and releasing the stored energy as heat in a controllable way. While, the azobenzene‐based PPCMs exhibit a contradiction between gravimetric energy storage density and photoinduced phase change. Here, a type of azobenzene surfactants with balance between molecular free volume and intermolecular interaction is designed in molecular level, which can address the coharvest of photon energy and low‐grade heat energy at room temperature. Such PPCMs gain the total gravimetric energy density up to 131.18 J g−1 by charging solid sample and 160.50 J g−1 by charging solution. Notably, the molar isomerization enthalpy upgrades by a factor of up to 2.4 compared to azobenzene. The working mechanism is explained by the computational studies. All the stored energy can release out as heat under Vis light, causing a fast surface temperature rise. This study demonstrates a new molecular designing strategy for developing azobenzene‐based PPCMs with high gravimetric energy density by improving the photon energy storage. A good balance between molecular free volume and intermolecular interaction for azobenzene‐containing surfactants is realized in molecular level, which leads to solar thermal fuels addressing the coharvest of photon energy and low‐grade heat energy at room temperature. This study provides a molecular designing strategy for developing solar thermal fuels with high gravimetric energy density by improving the photon energy storage.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202206623</identifier><identifier>PMID: 36534833</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Azo compounds ; azobenzene surfactant ; Charging ; Controllability ; Energy storage ; Enthalpy ; Heat ; Internal energy ; Isomerization ; micelles ; Nanotechnology ; Phase change materials ; photon energy storage ; Photons ; Room temperature ; Solar heating ; solar thermal fuels ; Surfactants</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2023-03, Vol.19 (10), p.e2206623-n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><rights>2022 Wiley-VCH GmbH.</rights><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3733-7b63b4522322331c5a32eda9fba31a1db0763b19a954cc64d529c43f815d129a3</citedby><cites>FETCH-LOGICAL-c3733-7b63b4522322331c5a32eda9fba31a1db0763b19a954cc64d529c43f815d129a3</cites><orcidid>0000-0001-7991-0194</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202206623$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202206623$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36534833$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Lei</creatorcontrib><creatorcontrib>Liu, Han</creatorcontrib><creatorcontrib>Du, Qianyao</creatorcontrib><creatorcontrib>Zhang, Guoqiang</creatorcontrib><creatorcontrib>Zhu, Shanhui</creatorcontrib><creatorcontrib>Wu, Zhongtao</creatorcontrib><creatorcontrib>Luo, Xiliang</creatorcontrib><title>Photoliquefiable Azobenzene Surfactants toward Solar Thermal Fuels that Upgrade Photon Energy Storage via Molecular Design</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Photoresponsive phase change materials (PPCMs) are capable of storing photon and heat energy simultaneously and releasing the stored energy as heat in a controllable way. While, the azobenzene‐based PPCMs exhibit a contradiction between gravimetric energy storage density and photoinduced phase change. Here, a type of azobenzene surfactants with balance between molecular free volume and intermolecular interaction is designed in molecular level, which can address the coharvest of photon energy and low‐grade heat energy at room temperature. Such PPCMs gain the total gravimetric energy density up to 131.18 J g−1 by charging solid sample and 160.50 J g−1 by charging solution. Notably, the molar isomerization enthalpy upgrades by a factor of up to 2.4 compared to azobenzene. The working mechanism is explained by the computational studies. All the stored energy can release out as heat under Vis light, causing a fast surface temperature rise. This study demonstrates a new molecular designing strategy for developing azobenzene‐based PPCMs with high gravimetric energy density by improving the photon energy storage. A good balance between molecular free volume and intermolecular interaction for azobenzene‐containing surfactants is realized in molecular level, which leads to solar thermal fuels addressing the coharvest of photon energy and low‐grade heat energy at room temperature. This study provides a molecular designing strategy for developing solar thermal fuels with high gravimetric energy density by improving the photon energy storage.</description><subject>Azo compounds</subject><subject>azobenzene surfactant</subject><subject>Charging</subject><subject>Controllability</subject><subject>Energy storage</subject><subject>Enthalpy</subject><subject>Heat</subject><subject>Internal energy</subject><subject>Isomerization</subject><subject>micelles</subject><subject>Nanotechnology</subject><subject>Phase change materials</subject><subject>photon energy storage</subject><subject>Photons</subject><subject>Room temperature</subject><subject>Solar heating</subject><subject>solar thermal fuels</subject><subject>Surfactants</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkd9r2zAQx8XYWH9sr3scgr7sJZmks2X7sXRpO0hpIe2zOcvnxEW2UsleSf76KU2XQl8GghPocx9O92XsmxRTKYT6GTprp0ooJbRW8IEdSy1honNVfDzcpThiJyE8CgFSJdlndgQ6hSQHOGbbu5UbnG2fRmparCzx862rqN9ST3wx-gbNgP0Q-OCe0dd84Sx6fr8i36HllyPZ-LTCgT-slx5r4i--ns968ssNXwzO45L4nxb5jbNkxl37Lwrtsv_CPjVoA319rafs4XJ2f3E9md9e_b44n08MZACTrNJQJalSEA9IkyIoqrFoKgSJsq5EFgFZYJEmxuikTlVhEmhymdZSFQin7Mfeu_YufjMMZdcGQ9ZiT24MpcpSHfeidBbRs3fooxt9H6eLVJ7KXIJOIjXdU8a7EDw15dq3HfpNKUW5S6XcpVIeUokN31-1Y9VRfcD_xRCBYg88t5Y2_9GVi5v5_E3-F0fHmeA</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Zhang, Lei</creator><creator>Liu, Han</creator><creator>Du, Qianyao</creator><creator>Zhang, Guoqiang</creator><creator>Zhu, Shanhui</creator><creator>Wu, Zhongtao</creator><creator>Luo, Xiliang</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7991-0194</orcidid></search><sort><creationdate>20230301</creationdate><title>Photoliquefiable Azobenzene Surfactants toward Solar Thermal Fuels that Upgrade Photon Energy Storage via Molecular Design</title><author>Zhang, Lei ; Liu, Han ; Du, Qianyao ; Zhang, Guoqiang ; Zhu, Shanhui ; Wu, Zhongtao ; Luo, Xiliang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3733-7b63b4522322331c5a32eda9fba31a1db0763b19a954cc64d529c43f815d129a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Azo compounds</topic><topic>azobenzene surfactant</topic><topic>Charging</topic><topic>Controllability</topic><topic>Energy storage</topic><topic>Enthalpy</topic><topic>Heat</topic><topic>Internal energy</topic><topic>Isomerization</topic><topic>micelles</topic><topic>Nanotechnology</topic><topic>Phase change materials</topic><topic>photon energy storage</topic><topic>Photons</topic><topic>Room temperature</topic><topic>Solar heating</topic><topic>solar thermal fuels</topic><topic>Surfactants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Lei</creatorcontrib><creatorcontrib>Liu, Han</creatorcontrib><creatorcontrib>Du, Qianyao</creatorcontrib><creatorcontrib>Zhang, Guoqiang</creatorcontrib><creatorcontrib>Zhu, Shanhui</creatorcontrib><creatorcontrib>Wu, Zhongtao</creatorcontrib><creatorcontrib>Luo, Xiliang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Lei</au><au>Liu, Han</au><au>Du, Qianyao</au><au>Zhang, Guoqiang</au><au>Zhu, Shanhui</au><au>Wu, Zhongtao</au><au>Luo, Xiliang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photoliquefiable Azobenzene Surfactants toward Solar Thermal Fuels that Upgrade Photon Energy Storage via Molecular Design</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2023-03-01</date><risdate>2023</risdate><volume>19</volume><issue>10</issue><spage>e2206623</spage><epage>n/a</epage><pages>e2206623-n/a</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Photoresponsive phase change materials (PPCMs) are capable of storing photon and heat energy simultaneously and releasing the stored energy as heat in a controllable way. While, the azobenzene‐based PPCMs exhibit a contradiction between gravimetric energy storage density and photoinduced phase change. Here, a type of azobenzene surfactants with balance between molecular free volume and intermolecular interaction is designed in molecular level, which can address the coharvest of photon energy and low‐grade heat energy at room temperature. Such PPCMs gain the total gravimetric energy density up to 131.18 J g−1 by charging solid sample and 160.50 J g−1 by charging solution. Notably, the molar isomerization enthalpy upgrades by a factor of up to 2.4 compared to azobenzene. The working mechanism is explained by the computational studies. All the stored energy can release out as heat under Vis light, causing a fast surface temperature rise. This study demonstrates a new molecular designing strategy for developing azobenzene‐based PPCMs with high gravimetric energy density by improving the photon energy storage. A good balance between molecular free volume and intermolecular interaction for azobenzene‐containing surfactants is realized in molecular level, which leads to solar thermal fuels addressing the coharvest of photon energy and low‐grade heat energy at room temperature. This study provides a molecular designing strategy for developing solar thermal fuels with high gravimetric energy density by improving the photon energy storage.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>36534833</pmid><doi>10.1002/smll.202206623</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-7991-0194</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2023-03, Vol.19 (10), p.e2206623-n/a
issn 1613-6810
1613-6829
language eng
recordid cdi_proquest_miscellaneous_2756124267
source Wiley Online Library All Journals
subjects Azo compounds
azobenzene surfactant
Charging
Controllability
Energy storage
Enthalpy
Heat
Internal energy
Isomerization
micelles
Nanotechnology
Phase change materials
photon energy storage
Photons
Room temperature
Solar heating
solar thermal fuels
Surfactants
title Photoliquefiable Azobenzene Surfactants toward Solar Thermal Fuels that Upgrade Photon Energy Storage via Molecular Design
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T17%3A22%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photoliquefiable%20Azobenzene%20Surfactants%20toward%20Solar%20Thermal%20Fuels%20that%20Upgrade%20Photon%20Energy%20Storage%20via%20Molecular%20Design&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Zhang,%20Lei&rft.date=2023-03-01&rft.volume=19&rft.issue=10&rft.spage=e2206623&rft.epage=n/a&rft.pages=e2206623-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202206623&rft_dat=%3Cproquest_cross%3E2785181364%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2785181364&rft_id=info:pmid/36534833&rfr_iscdi=true