Nonmonotonic Superparamagnetic Behavior of the Ferritin Iron Core Revealed via Quantum Spin Relaxometry

Ferritin is the primary storage protein in our body and is of significant interest in biochemistry, nanotechnology, and condensed matter physics. More specifically within this sphere of interest are the magnetic properties of the iron core of ferritin, which have been utilized as a contrast agent in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2023-01, Vol.17 (1), p.372-381
Hauptverfasser: Grant, Erin S., Hall, Liam T., Hollenberg, Lloyd C. L., McColl, Gawain, Simpson, David A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 381
container_issue 1
container_start_page 372
container_title ACS nano
container_volume 17
creator Grant, Erin S.
Hall, Liam T.
Hollenberg, Lloyd C. L.
McColl, Gawain
Simpson, David A.
description Ferritin is the primary storage protein in our body and is of significant interest in biochemistry, nanotechnology, and condensed matter physics. More specifically within this sphere of interest are the magnetic properties of the iron core of ferritin, which have been utilized as a contrast agent in applications such as magnetic resonance imaging. This magnetism depends on both the number of iron atoms present, L, and the nature of the magnetic ordering of their electron spins. In this work, we create a series of ferritin samples containing homogeneous iron loads and apply diamond-based quantum spin relaxometry to systematically study their room temperature magnetic properties. We observe anomalous magnetic behavior that can be explained using a theoretical model detailing a morphological change to the iron core occurring at relatively low iron loads. This model provides an L 0.35±0.06 scaling of the uncompensated Fe spins, in agreement with previous theoretical predictions. The necessary inclusion of this morphological change within the model is also supported by electron microscopy studies of ferritin with low iron content. This provides evidence for a magnetic consequence of this morphological change and positions diamond-based quantum spin relaxometry as an effective, noninvasive tool for probing the magnetic properties of metalloproteins. The low detection limit (ferritin 2% loaded at a concentration of 7.5 ± 0.4 μg/mL) also makes this a promising method for precision applications where low analyte concentrations are unavoidable, such as in biological research or even clinical analysis.
doi_str_mv 10.1021/acsnano.2c08698
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2756124236</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2756124236</sourcerecordid><originalsourceid>FETCH-LOGICAL-a263t-ea8a72e8b94ecd8ccd67e3742dd4fcccc9db5b6b0a121c0b562683ba6acb171a3</originalsourceid><addsrcrecordid>eNp1kM1Lw0AQxRdRbK2evckeBWmb3SSb5KjFaqEotgrewmQzaVOS3bibFPvfu9Lam3OZD37vwTxCrpk3Yh5nY5BWgdIjLr1YJPEJ6bPEF0O3fJ4e55D1yIW1G88LozgS56Tni9APopj3yepFq1or3WpVSrrsGjQNGKhhpbB1lwdcw7bUhuqCtmukUzSmbEtFZ0YrOtEG6QK3CBXmdFsCfetAtV1Nl41jFljBt66xNbtLclZAZfHq0AfkY_r4Pnkezl-fZpP7-RC48NshQgwRxzhLApR5LGUuIvSjgOd5UEhXSZ6Fmcg8YJxJLwsFF7GfgQCZsYiBPyC3e9_G6K8ObZvWpZVYVaBQdzblUSgYD7gvHDreo9Joaw0WaWPKGswuZV76m256SDc9pOsUNwfzLqsxP_J_cTrgbg84ZbrRnVHu13_tfgAlo4id</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2756124236</pqid></control><display><type>article</type><title>Nonmonotonic Superparamagnetic Behavior of the Ferritin Iron Core Revealed via Quantum Spin Relaxometry</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Grant, Erin S. ; Hall, Liam T. ; Hollenberg, Lloyd C. L. ; McColl, Gawain ; Simpson, David A.</creator><creatorcontrib>Grant, Erin S. ; Hall, Liam T. ; Hollenberg, Lloyd C. L. ; McColl, Gawain ; Simpson, David A.</creatorcontrib><description>Ferritin is the primary storage protein in our body and is of significant interest in biochemistry, nanotechnology, and condensed matter physics. More specifically within this sphere of interest are the magnetic properties of the iron core of ferritin, which have been utilized as a contrast agent in applications such as magnetic resonance imaging. This magnetism depends on both the number of iron atoms present, L, and the nature of the magnetic ordering of their electron spins. In this work, we create a series of ferritin samples containing homogeneous iron loads and apply diamond-based quantum spin relaxometry to systematically study their room temperature magnetic properties. We observe anomalous magnetic behavior that can be explained using a theoretical model detailing a morphological change to the iron core occurring at relatively low iron loads. This model provides an L 0.35±0.06 scaling of the uncompensated Fe spins, in agreement with previous theoretical predictions. The necessary inclusion of this morphological change within the model is also supported by electron microscopy studies of ferritin with low iron content. This provides evidence for a magnetic consequence of this morphological change and positions diamond-based quantum spin relaxometry as an effective, noninvasive tool for probing the magnetic properties of metalloproteins. The low detection limit (ferritin 2% loaded at a concentration of 7.5 ± 0.4 μg/mL) also makes this a promising method for precision applications where low analyte concentrations are unavoidable, such as in biological research or even clinical analysis.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.2c08698</identifier><identifier>PMID: 36534782</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Diamond ; Ferritins ; Iron ; Magnetic Iron Oxide Nanoparticles ; Metalloproteins</subject><ispartof>ACS nano, 2023-01, Vol.17 (1), p.372-381</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a263t-ea8a72e8b94ecd8ccd67e3742dd4fcccc9db5b6b0a121c0b562683ba6acb171a3</citedby><cites>FETCH-LOGICAL-a263t-ea8a72e8b94ecd8ccd67e3742dd4fcccc9db5b6b0a121c0b562683ba6acb171a3</cites><orcidid>0000-0001-9056-2469</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.2c08698$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.2c08698$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36534782$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Grant, Erin S.</creatorcontrib><creatorcontrib>Hall, Liam T.</creatorcontrib><creatorcontrib>Hollenberg, Lloyd C. L.</creatorcontrib><creatorcontrib>McColl, Gawain</creatorcontrib><creatorcontrib>Simpson, David A.</creatorcontrib><title>Nonmonotonic Superparamagnetic Behavior of the Ferritin Iron Core Revealed via Quantum Spin Relaxometry</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Ferritin is the primary storage protein in our body and is of significant interest in biochemistry, nanotechnology, and condensed matter physics. More specifically within this sphere of interest are the magnetic properties of the iron core of ferritin, which have been utilized as a contrast agent in applications such as magnetic resonance imaging. This magnetism depends on both the number of iron atoms present, L, and the nature of the magnetic ordering of their electron spins. In this work, we create a series of ferritin samples containing homogeneous iron loads and apply diamond-based quantum spin relaxometry to systematically study their room temperature magnetic properties. We observe anomalous magnetic behavior that can be explained using a theoretical model detailing a morphological change to the iron core occurring at relatively low iron loads. This model provides an L 0.35±0.06 scaling of the uncompensated Fe spins, in agreement with previous theoretical predictions. The necessary inclusion of this morphological change within the model is also supported by electron microscopy studies of ferritin with low iron content. This provides evidence for a magnetic consequence of this morphological change and positions diamond-based quantum spin relaxometry as an effective, noninvasive tool for probing the magnetic properties of metalloproteins. The low detection limit (ferritin 2% loaded at a concentration of 7.5 ± 0.4 μg/mL) also makes this a promising method for precision applications where low analyte concentrations are unavoidable, such as in biological research or even clinical analysis.</description><subject>Diamond</subject><subject>Ferritins</subject><subject>Iron</subject><subject>Magnetic Iron Oxide Nanoparticles</subject><subject>Metalloproteins</subject><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kM1Lw0AQxRdRbK2evckeBWmb3SSb5KjFaqEotgrewmQzaVOS3bibFPvfu9Lam3OZD37vwTxCrpk3Yh5nY5BWgdIjLr1YJPEJ6bPEF0O3fJ4e55D1yIW1G88LozgS56Tni9APopj3yepFq1or3WpVSrrsGjQNGKhhpbB1lwdcw7bUhuqCtmukUzSmbEtFZ0YrOtEG6QK3CBXmdFsCfetAtV1Nl41jFljBt66xNbtLclZAZfHq0AfkY_r4Pnkezl-fZpP7-RC48NshQgwRxzhLApR5LGUuIvSjgOd5UEhXSZ6Fmcg8YJxJLwsFF7GfgQCZsYiBPyC3e9_G6K8ObZvWpZVYVaBQdzblUSgYD7gvHDreo9Joaw0WaWPKGswuZV76m256SDc9pOsUNwfzLqsxP_J_cTrgbg84ZbrRnVHu13_tfgAlo4id</recordid><startdate>20230110</startdate><enddate>20230110</enddate><creator>Grant, Erin S.</creator><creator>Hall, Liam T.</creator><creator>Hollenberg, Lloyd C. L.</creator><creator>McColl, Gawain</creator><creator>Simpson, David A.</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9056-2469</orcidid></search><sort><creationdate>20230110</creationdate><title>Nonmonotonic Superparamagnetic Behavior of the Ferritin Iron Core Revealed via Quantum Spin Relaxometry</title><author>Grant, Erin S. ; Hall, Liam T. ; Hollenberg, Lloyd C. L. ; McColl, Gawain ; Simpson, David A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a263t-ea8a72e8b94ecd8ccd67e3742dd4fcccc9db5b6b0a121c0b562683ba6acb171a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Diamond</topic><topic>Ferritins</topic><topic>Iron</topic><topic>Magnetic Iron Oxide Nanoparticles</topic><topic>Metalloproteins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grant, Erin S.</creatorcontrib><creatorcontrib>Hall, Liam T.</creatorcontrib><creatorcontrib>Hollenberg, Lloyd C. L.</creatorcontrib><creatorcontrib>McColl, Gawain</creatorcontrib><creatorcontrib>Simpson, David A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grant, Erin S.</au><au>Hall, Liam T.</au><au>Hollenberg, Lloyd C. L.</au><au>McColl, Gawain</au><au>Simpson, David A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonmonotonic Superparamagnetic Behavior of the Ferritin Iron Core Revealed via Quantum Spin Relaxometry</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2023-01-10</date><risdate>2023</risdate><volume>17</volume><issue>1</issue><spage>372</spage><epage>381</epage><pages>372-381</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Ferritin is the primary storage protein in our body and is of significant interest in biochemistry, nanotechnology, and condensed matter physics. More specifically within this sphere of interest are the magnetic properties of the iron core of ferritin, which have been utilized as a contrast agent in applications such as magnetic resonance imaging. This magnetism depends on both the number of iron atoms present, L, and the nature of the magnetic ordering of their electron spins. In this work, we create a series of ferritin samples containing homogeneous iron loads and apply diamond-based quantum spin relaxometry to systematically study their room temperature magnetic properties. We observe anomalous magnetic behavior that can be explained using a theoretical model detailing a morphological change to the iron core occurring at relatively low iron loads. This model provides an L 0.35±0.06 scaling of the uncompensated Fe spins, in agreement with previous theoretical predictions. The necessary inclusion of this morphological change within the model is also supported by electron microscopy studies of ferritin with low iron content. This provides evidence for a magnetic consequence of this morphological change and positions diamond-based quantum spin relaxometry as an effective, noninvasive tool for probing the magnetic properties of metalloproteins. The low detection limit (ferritin 2% loaded at a concentration of 7.5 ± 0.4 μg/mL) also makes this a promising method for precision applications where low analyte concentrations are unavoidable, such as in biological research or even clinical analysis.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>36534782</pmid><doi>10.1021/acsnano.2c08698</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-9056-2469</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2023-01, Vol.17 (1), p.372-381
issn 1936-0851
1936-086X
language eng
recordid cdi_proquest_miscellaneous_2756124236
source MEDLINE; American Chemical Society Journals
subjects Diamond
Ferritins
Iron
Magnetic Iron Oxide Nanoparticles
Metalloproteins
title Nonmonotonic Superparamagnetic Behavior of the Ferritin Iron Core Revealed via Quantum Spin Relaxometry
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T05%3A06%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonmonotonic%20Superparamagnetic%20Behavior%20of%20the%20Ferritin%20Iron%20Core%20Revealed%20via%20Quantum%20Spin%20Relaxometry&rft.jtitle=ACS%20nano&rft.au=Grant,%20Erin%20S.&rft.date=2023-01-10&rft.volume=17&rft.issue=1&rft.spage=372&rft.epage=381&rft.pages=372-381&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.2c08698&rft_dat=%3Cproquest_cross%3E2756124236%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2756124236&rft_id=info:pmid/36534782&rfr_iscdi=true