Microenvironment Modulation of Metal–Organic Frameworks (MOFs) for Coordination Olefin Oligomerization and (co)Polymerization

The majority of commercial polyolefins are produced by coordination polymerization using early or late transition metal catalysts. Molecular catalysts containing these transition metals (Ti, Zr, Cr, Ni, and Fe, etc.) are loaded on supports for controlled polymerization behavior and polymer morpholog...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2023-03, Vol.19 (9), p.e2205898-n/a
Hauptverfasser: Zhang, Chuan‐Lei, Zhou, Tao, Li, Yong‐Qing, Lu, Xin, Guan, Ye‐Bin, Cao, Yu‐Cai, Cao, Gui‐Ping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 9
container_start_page e2205898
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 19
creator Zhang, Chuan‐Lei
Zhou, Tao
Li, Yong‐Qing
Lu, Xin
Guan, Ye‐Bin
Cao, Yu‐Cai
Cao, Gui‐Ping
description The majority of commercial polyolefins are produced by coordination polymerization using early or late transition metal catalysts. Molecular catalysts containing these transition metals (Ti, Zr, Cr, Ni, and Fe, etc.) are loaded on supports for controlled polymerization behavior and polymer morphology in slurry or gas phase processes. Within the last few years, metal–organic frameworks (MOFs), a class of unique porous crystalline materials constructed from metal ions/clusters and organic ligands, have been designed and utilized as excellent supports for heterogeneous polymerization catalysis whose high density and uniform distribution of active sites would benefit the modulations of molecular weight distributions of high‐performance olefin oligomers and (co)polymers. Impressive efforts have been made to modulate the microenvironment surrounding the active centers at the atomic level for improved activities of MOFs‐based catalysts and controlled selectivity of olefin insertion. This review aims to draw a comprehensive picture of MOFs for coordination olefin oligomerization and (co)polymerization in the past decades with respect to different transition metal active centers, various incorporation sites, and finally microenvironment modulation. In consideration of more efforts are needed to overcome challenges for further industrial and commercial application, a brief outlook is provided. Metal–organic frameworks (MOFs) are designed as excellent supports for heterogeneous polymerization catalysis, and impressive efforts are made to modulate the microenvironment for improving activities and selectivity of MOFs. This review aims to draw a comprehensive picture of MOFs for coordination olefin oligomerization and (co)polymerization with respect to different transition metal active centers, various incorporation sites, and finally microenvironment modulation.
doi_str_mv 10.1002/smll.202205898
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2756124225</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2780637921</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3738-5c44c7d558b5f437a6d73d1106d6502be484ed0aac0e32fdebbc2a9e0460568b3</originalsourceid><addsrcrecordid>eNqFkU9v1DAQxS1ERf9x5YgicdkedhnbsZMc0YoFpI0WCXqOHHtSuTh2sTdU20v5Dv2GfBKySruVuHB6o6ffPI3mEfKGwoICsPepd27BgDEQZVW-ICdUUj6XJateHmYKx-Q0pWsATllevCLHXAqeV8BPyH1tdQzof9kYfI9-m9XBDE5tbfBZ6LIat8r9-f2wiVfKW52tourxNsQfKZvVm1W6yLoQs2UI0Vg_bW0cdnYv9ir0GO3dZCtvspkOF1-D2z3b5-SoUy7h60c9I5erj9-Xn-frzacvyw_rueYFL-dC57kujBBlK7qcF0qaghtKQRopgLWYlzkaUEoDctYZbFvNVIWQSxCybPkZmU25NzH8HDBtm94mjc4pj2FIDSuEHJ_DmBjRd_-g12GIfrxupEqQvKgYHanFRI3vSyli19xE26u4ayg0-2qafTXNoZpx4e1j7ND2aA74UxcjUE3ArXW4-09c861er5_D_wITBZ2e</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2780637921</pqid></control><display><type>article</type><title>Microenvironment Modulation of Metal–Organic Frameworks (MOFs) for Coordination Olefin Oligomerization and (co)Polymerization</title><source>Access via Wiley Online Library</source><creator>Zhang, Chuan‐Lei ; Zhou, Tao ; Li, Yong‐Qing ; Lu, Xin ; Guan, Ye‐Bin ; Cao, Yu‐Cai ; Cao, Gui‐Ping</creator><creatorcontrib>Zhang, Chuan‐Lei ; Zhou, Tao ; Li, Yong‐Qing ; Lu, Xin ; Guan, Ye‐Bin ; Cao, Yu‐Cai ; Cao, Gui‐Ping</creatorcontrib><description>The majority of commercial polyolefins are produced by coordination polymerization using early or late transition metal catalysts. Molecular catalysts containing these transition metals (Ti, Zr, Cr, Ni, and Fe, etc.) are loaded on supports for controlled polymerization behavior and polymer morphology in slurry or gas phase processes. Within the last few years, metal–organic frameworks (MOFs), a class of unique porous crystalline materials constructed from metal ions/clusters and organic ligands, have been designed and utilized as excellent supports for heterogeneous polymerization catalysis whose high density and uniform distribution of active sites would benefit the modulations of molecular weight distributions of high‐performance olefin oligomers and (co)polymers. Impressive efforts have been made to modulate the microenvironment surrounding the active centers at the atomic level for improved activities of MOFs‐based catalysts and controlled selectivity of olefin insertion. This review aims to draw a comprehensive picture of MOFs for coordination olefin oligomerization and (co)polymerization in the past decades with respect to different transition metal active centers, various incorporation sites, and finally microenvironment modulation. In consideration of more efforts are needed to overcome challenges for further industrial and commercial application, a brief outlook is provided. Metal–organic frameworks (MOFs) are designed as excellent supports for heterogeneous polymerization catalysis, and impressive efforts are made to modulate the microenvironment for improving activities and selectivity of MOFs. This review aims to draw a comprehensive picture of MOFs for coordination olefin oligomerization and (co)polymerization with respect to different transition metal active centers, various incorporation sites, and finally microenvironment modulation.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202205898</identifier><identifier>PMID: 36534903</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Catalysis ; Catalysts ; Chromium ; Coordination ; coordination polymerization ; Copolymers ; Heterogeneous bulk polymerization ; Iron ; Metal-organic frameworks ; microenvironments ; Modulation ; Molecular weight distribution ; Nanotechnology ; Oligomerization ; Polymerization ; polyolefin ; Polyolefins ; Porous materials ; Selectivity ; Titanium ; Transition metals ; Vapor phases ; Zirconium</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2023-03, Vol.19 (9), p.e2205898-n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><rights>2022 Wiley-VCH GmbH.</rights><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3738-5c44c7d558b5f437a6d73d1106d6502be484ed0aac0e32fdebbc2a9e0460568b3</citedby><cites>FETCH-LOGICAL-c3738-5c44c7d558b5f437a6d73d1106d6502be484ed0aac0e32fdebbc2a9e0460568b3</cites><orcidid>0000-0002-4474-1973</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202205898$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202205898$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,782,786,1419,27933,27934,45583,45584</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36534903$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Chuan‐Lei</creatorcontrib><creatorcontrib>Zhou, Tao</creatorcontrib><creatorcontrib>Li, Yong‐Qing</creatorcontrib><creatorcontrib>Lu, Xin</creatorcontrib><creatorcontrib>Guan, Ye‐Bin</creatorcontrib><creatorcontrib>Cao, Yu‐Cai</creatorcontrib><creatorcontrib>Cao, Gui‐Ping</creatorcontrib><title>Microenvironment Modulation of Metal–Organic Frameworks (MOFs) for Coordination Olefin Oligomerization and (co)Polymerization</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>The majority of commercial polyolefins are produced by coordination polymerization using early or late transition metal catalysts. Molecular catalysts containing these transition metals (Ti, Zr, Cr, Ni, and Fe, etc.) are loaded on supports for controlled polymerization behavior and polymer morphology in slurry or gas phase processes. Within the last few years, metal–organic frameworks (MOFs), a class of unique porous crystalline materials constructed from metal ions/clusters and organic ligands, have been designed and utilized as excellent supports for heterogeneous polymerization catalysis whose high density and uniform distribution of active sites would benefit the modulations of molecular weight distributions of high‐performance olefin oligomers and (co)polymers. Impressive efforts have been made to modulate the microenvironment surrounding the active centers at the atomic level for improved activities of MOFs‐based catalysts and controlled selectivity of olefin insertion. This review aims to draw a comprehensive picture of MOFs for coordination olefin oligomerization and (co)polymerization in the past decades with respect to different transition metal active centers, various incorporation sites, and finally microenvironment modulation. In consideration of more efforts are needed to overcome challenges for further industrial and commercial application, a brief outlook is provided. Metal–organic frameworks (MOFs) are designed as excellent supports for heterogeneous polymerization catalysis, and impressive efforts are made to modulate the microenvironment for improving activities and selectivity of MOFs. This review aims to draw a comprehensive picture of MOFs for coordination olefin oligomerization and (co)polymerization with respect to different transition metal active centers, various incorporation sites, and finally microenvironment modulation.</description><subject>Catalysis</subject><subject>Catalysts</subject><subject>Chromium</subject><subject>Coordination</subject><subject>coordination polymerization</subject><subject>Copolymers</subject><subject>Heterogeneous bulk polymerization</subject><subject>Iron</subject><subject>Metal-organic frameworks</subject><subject>microenvironments</subject><subject>Modulation</subject><subject>Molecular weight distribution</subject><subject>Nanotechnology</subject><subject>Oligomerization</subject><subject>Polymerization</subject><subject>polyolefin</subject><subject>Polyolefins</subject><subject>Porous materials</subject><subject>Selectivity</subject><subject>Titanium</subject><subject>Transition metals</subject><subject>Vapor phases</subject><subject>Zirconium</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkU9v1DAQxS1ERf9x5YgicdkedhnbsZMc0YoFpI0WCXqOHHtSuTh2sTdU20v5Dv2GfBKySruVuHB6o6ffPI3mEfKGwoICsPepd27BgDEQZVW-ICdUUj6XJateHmYKx-Q0pWsATllevCLHXAqeV8BPyH1tdQzof9kYfI9-m9XBDE5tbfBZ6LIat8r9-f2wiVfKW52tourxNsQfKZvVm1W6yLoQs2UI0Vg_bW0cdnYv9ir0GO3dZCtvspkOF1-D2z3b5-SoUy7h60c9I5erj9-Xn-frzacvyw_rueYFL-dC57kujBBlK7qcF0qaghtKQRopgLWYlzkaUEoDctYZbFvNVIWQSxCybPkZmU25NzH8HDBtm94mjc4pj2FIDSuEHJ_DmBjRd_-g12GIfrxupEqQvKgYHanFRI3vSyli19xE26u4ayg0-2qafTXNoZpx4e1j7ND2aA74UxcjUE3ArXW4-09c861er5_D_wITBZ2e</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Zhang, Chuan‐Lei</creator><creator>Zhou, Tao</creator><creator>Li, Yong‐Qing</creator><creator>Lu, Xin</creator><creator>Guan, Ye‐Bin</creator><creator>Cao, Yu‐Cai</creator><creator>Cao, Gui‐Ping</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4474-1973</orcidid></search><sort><creationdate>20230301</creationdate><title>Microenvironment Modulation of Metal–Organic Frameworks (MOFs) for Coordination Olefin Oligomerization and (co)Polymerization</title><author>Zhang, Chuan‐Lei ; Zhou, Tao ; Li, Yong‐Qing ; Lu, Xin ; Guan, Ye‐Bin ; Cao, Yu‐Cai ; Cao, Gui‐Ping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3738-5c44c7d558b5f437a6d73d1106d6502be484ed0aac0e32fdebbc2a9e0460568b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Catalysis</topic><topic>Catalysts</topic><topic>Chromium</topic><topic>Coordination</topic><topic>coordination polymerization</topic><topic>Copolymers</topic><topic>Heterogeneous bulk polymerization</topic><topic>Iron</topic><topic>Metal-organic frameworks</topic><topic>microenvironments</topic><topic>Modulation</topic><topic>Molecular weight distribution</topic><topic>Nanotechnology</topic><topic>Oligomerization</topic><topic>Polymerization</topic><topic>polyolefin</topic><topic>Polyolefins</topic><topic>Porous materials</topic><topic>Selectivity</topic><topic>Titanium</topic><topic>Transition metals</topic><topic>Vapor phases</topic><topic>Zirconium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Chuan‐Lei</creatorcontrib><creatorcontrib>Zhou, Tao</creatorcontrib><creatorcontrib>Li, Yong‐Qing</creatorcontrib><creatorcontrib>Lu, Xin</creatorcontrib><creatorcontrib>Guan, Ye‐Bin</creatorcontrib><creatorcontrib>Cao, Yu‐Cai</creatorcontrib><creatorcontrib>Cao, Gui‐Ping</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Chuan‐Lei</au><au>Zhou, Tao</au><au>Li, Yong‐Qing</au><au>Lu, Xin</au><au>Guan, Ye‐Bin</au><au>Cao, Yu‐Cai</au><au>Cao, Gui‐Ping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microenvironment Modulation of Metal–Organic Frameworks (MOFs) for Coordination Olefin Oligomerization and (co)Polymerization</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2023-03-01</date><risdate>2023</risdate><volume>19</volume><issue>9</issue><spage>e2205898</spage><epage>n/a</epage><pages>e2205898-n/a</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>The majority of commercial polyolefins are produced by coordination polymerization using early or late transition metal catalysts. Molecular catalysts containing these transition metals (Ti, Zr, Cr, Ni, and Fe, etc.) are loaded on supports for controlled polymerization behavior and polymer morphology in slurry or gas phase processes. Within the last few years, metal–organic frameworks (MOFs), a class of unique porous crystalline materials constructed from metal ions/clusters and organic ligands, have been designed and utilized as excellent supports for heterogeneous polymerization catalysis whose high density and uniform distribution of active sites would benefit the modulations of molecular weight distributions of high‐performance olefin oligomers and (co)polymers. Impressive efforts have been made to modulate the microenvironment surrounding the active centers at the atomic level for improved activities of MOFs‐based catalysts and controlled selectivity of olefin insertion. This review aims to draw a comprehensive picture of MOFs for coordination olefin oligomerization and (co)polymerization in the past decades with respect to different transition metal active centers, various incorporation sites, and finally microenvironment modulation. In consideration of more efforts are needed to overcome challenges for further industrial and commercial application, a brief outlook is provided. Metal–organic frameworks (MOFs) are designed as excellent supports for heterogeneous polymerization catalysis, and impressive efforts are made to modulate the microenvironment for improving activities and selectivity of MOFs. This review aims to draw a comprehensive picture of MOFs for coordination olefin oligomerization and (co)polymerization with respect to different transition metal active centers, various incorporation sites, and finally microenvironment modulation.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>36534903</pmid><doi>10.1002/smll.202205898</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-4474-1973</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2023-03, Vol.19 (9), p.e2205898-n/a
issn 1613-6810
1613-6829
language eng
recordid cdi_proquest_miscellaneous_2756124225
source Access via Wiley Online Library
subjects Catalysis
Catalysts
Chromium
Coordination
coordination polymerization
Copolymers
Heterogeneous bulk polymerization
Iron
Metal-organic frameworks
microenvironments
Modulation
Molecular weight distribution
Nanotechnology
Oligomerization
Polymerization
polyolefin
Polyolefins
Porous materials
Selectivity
Titanium
Transition metals
Vapor phases
Zirconium
title Microenvironment Modulation of Metal–Organic Frameworks (MOFs) for Coordination Olefin Oligomerization and (co)Polymerization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-01T07%3A41%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microenvironment%20Modulation%20of%20Metal%E2%80%93Organic%20Frameworks%20(MOFs)%20for%20Coordination%20Olefin%20Oligomerization%20and%20(co)Polymerization&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Zhang,%20Chuan%E2%80%90Lei&rft.date=2023-03-01&rft.volume=19&rft.issue=9&rft.spage=e2205898&rft.epage=n/a&rft.pages=e2205898-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202205898&rft_dat=%3Cproquest_cross%3E2780637921%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2780637921&rft_id=info:pmid/36534903&rfr_iscdi=true