Microenvironment Modulation of Metal–Organic Frameworks (MOFs) for Coordination Olefin Oligomerization and (co)Polymerization
The majority of commercial polyolefins are produced by coordination polymerization using early or late transition metal catalysts. Molecular catalysts containing these transition metals (Ti, Zr, Cr, Ni, and Fe, etc.) are loaded on supports for controlled polymerization behavior and polymer morpholog...
Gespeichert in:
Veröffentlicht in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2023-03, Vol.19 (9), p.e2205898-n/a |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 9 |
container_start_page | e2205898 |
container_title | Small (Weinheim an der Bergstrasse, Germany) |
container_volume | 19 |
creator | Zhang, Chuan‐Lei Zhou, Tao Li, Yong‐Qing Lu, Xin Guan, Ye‐Bin Cao, Yu‐Cai Cao, Gui‐Ping |
description | The majority of commercial polyolefins are produced by coordination polymerization using early or late transition metal catalysts. Molecular catalysts containing these transition metals (Ti, Zr, Cr, Ni, and Fe, etc.) are loaded on supports for controlled polymerization behavior and polymer morphology in slurry or gas phase processes. Within the last few years, metal–organic frameworks (MOFs), a class of unique porous crystalline materials constructed from metal ions/clusters and organic ligands, have been designed and utilized as excellent supports for heterogeneous polymerization catalysis whose high density and uniform distribution of active sites would benefit the modulations of molecular weight distributions of high‐performance olefin oligomers and (co)polymers. Impressive efforts have been made to modulate the microenvironment surrounding the active centers at the atomic level for improved activities of MOFs‐based catalysts and controlled selectivity of olefin insertion. This review aims to draw a comprehensive picture of MOFs for coordination olefin oligomerization and (co)polymerization in the past decades with respect to different transition metal active centers, various incorporation sites, and finally microenvironment modulation. In consideration of more efforts are needed to overcome challenges for further industrial and commercial application, a brief outlook is provided.
Metal–organic frameworks (MOFs) are designed as excellent supports for heterogeneous polymerization catalysis, and impressive efforts are made to modulate the microenvironment for improving activities and selectivity of MOFs. This review aims to draw a comprehensive picture of MOFs for coordination olefin oligomerization and (co)polymerization with respect to different transition metal active centers, various incorporation sites, and finally microenvironment modulation. |
doi_str_mv | 10.1002/smll.202205898 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2756124225</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2780637921</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3738-5c44c7d558b5f437a6d73d1106d6502be484ed0aac0e32fdebbc2a9e0460568b3</originalsourceid><addsrcrecordid>eNqFkU9v1DAQxS1ERf9x5YgicdkedhnbsZMc0YoFpI0WCXqOHHtSuTh2sTdU20v5Dv2GfBKySruVuHB6o6ffPI3mEfKGwoICsPepd27BgDEQZVW-ICdUUj6XJateHmYKx-Q0pWsATllevCLHXAqeV8BPyH1tdQzof9kYfI9-m9XBDE5tbfBZ6LIat8r9-f2wiVfKW52tourxNsQfKZvVm1W6yLoQs2UI0Vg_bW0cdnYv9ir0GO3dZCtvspkOF1-D2z3b5-SoUy7h60c9I5erj9-Xn-frzacvyw_rueYFL-dC57kujBBlK7qcF0qaghtKQRopgLWYlzkaUEoDctYZbFvNVIWQSxCybPkZmU25NzH8HDBtm94mjc4pj2FIDSuEHJ_DmBjRd_-g12GIfrxupEqQvKgYHanFRI3vSyli19xE26u4ayg0-2qafTXNoZpx4e1j7ND2aA74UxcjUE3ArXW4-09c861er5_D_wITBZ2e</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2780637921</pqid></control><display><type>article</type><title>Microenvironment Modulation of Metal–Organic Frameworks (MOFs) for Coordination Olefin Oligomerization and (co)Polymerization</title><source>Access via Wiley Online Library</source><creator>Zhang, Chuan‐Lei ; Zhou, Tao ; Li, Yong‐Qing ; Lu, Xin ; Guan, Ye‐Bin ; Cao, Yu‐Cai ; Cao, Gui‐Ping</creator><creatorcontrib>Zhang, Chuan‐Lei ; Zhou, Tao ; Li, Yong‐Qing ; Lu, Xin ; Guan, Ye‐Bin ; Cao, Yu‐Cai ; Cao, Gui‐Ping</creatorcontrib><description>The majority of commercial polyolefins are produced by coordination polymerization using early or late transition metal catalysts. Molecular catalysts containing these transition metals (Ti, Zr, Cr, Ni, and Fe, etc.) are loaded on supports for controlled polymerization behavior and polymer morphology in slurry or gas phase processes. Within the last few years, metal–organic frameworks (MOFs), a class of unique porous crystalline materials constructed from metal ions/clusters and organic ligands, have been designed and utilized as excellent supports for heterogeneous polymerization catalysis whose high density and uniform distribution of active sites would benefit the modulations of molecular weight distributions of high‐performance olefin oligomers and (co)polymers. Impressive efforts have been made to modulate the microenvironment surrounding the active centers at the atomic level for improved activities of MOFs‐based catalysts and controlled selectivity of olefin insertion. This review aims to draw a comprehensive picture of MOFs for coordination olefin oligomerization and (co)polymerization in the past decades with respect to different transition metal active centers, various incorporation sites, and finally microenvironment modulation. In consideration of more efforts are needed to overcome challenges for further industrial and commercial application, a brief outlook is provided.
Metal–organic frameworks (MOFs) are designed as excellent supports for heterogeneous polymerization catalysis, and impressive efforts are made to modulate the microenvironment for improving activities and selectivity of MOFs. This review aims to draw a comprehensive picture of MOFs for coordination olefin oligomerization and (co)polymerization with respect to different transition metal active centers, various incorporation sites, and finally microenvironment modulation.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202205898</identifier><identifier>PMID: 36534903</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Catalysis ; Catalysts ; Chromium ; Coordination ; coordination polymerization ; Copolymers ; Heterogeneous bulk polymerization ; Iron ; Metal-organic frameworks ; microenvironments ; Modulation ; Molecular weight distribution ; Nanotechnology ; Oligomerization ; Polymerization ; polyolefin ; Polyolefins ; Porous materials ; Selectivity ; Titanium ; Transition metals ; Vapor phases ; Zirconium</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2023-03, Vol.19 (9), p.e2205898-n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><rights>2022 Wiley-VCH GmbH.</rights><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3738-5c44c7d558b5f437a6d73d1106d6502be484ed0aac0e32fdebbc2a9e0460568b3</citedby><cites>FETCH-LOGICAL-c3738-5c44c7d558b5f437a6d73d1106d6502be484ed0aac0e32fdebbc2a9e0460568b3</cites><orcidid>0000-0002-4474-1973</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202205898$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202205898$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,782,786,1419,27933,27934,45583,45584</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36534903$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Chuan‐Lei</creatorcontrib><creatorcontrib>Zhou, Tao</creatorcontrib><creatorcontrib>Li, Yong‐Qing</creatorcontrib><creatorcontrib>Lu, Xin</creatorcontrib><creatorcontrib>Guan, Ye‐Bin</creatorcontrib><creatorcontrib>Cao, Yu‐Cai</creatorcontrib><creatorcontrib>Cao, Gui‐Ping</creatorcontrib><title>Microenvironment Modulation of Metal–Organic Frameworks (MOFs) for Coordination Olefin Oligomerization and (co)Polymerization</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>The majority of commercial polyolefins are produced by coordination polymerization using early or late transition metal catalysts. Molecular catalysts containing these transition metals (Ti, Zr, Cr, Ni, and Fe, etc.) are loaded on supports for controlled polymerization behavior and polymer morphology in slurry or gas phase processes. Within the last few years, metal–organic frameworks (MOFs), a class of unique porous crystalline materials constructed from metal ions/clusters and organic ligands, have been designed and utilized as excellent supports for heterogeneous polymerization catalysis whose high density and uniform distribution of active sites would benefit the modulations of molecular weight distributions of high‐performance olefin oligomers and (co)polymers. Impressive efforts have been made to modulate the microenvironment surrounding the active centers at the atomic level for improved activities of MOFs‐based catalysts and controlled selectivity of olefin insertion. This review aims to draw a comprehensive picture of MOFs for coordination olefin oligomerization and (co)polymerization in the past decades with respect to different transition metal active centers, various incorporation sites, and finally microenvironment modulation. In consideration of more efforts are needed to overcome challenges for further industrial and commercial application, a brief outlook is provided.
Metal–organic frameworks (MOFs) are designed as excellent supports for heterogeneous polymerization catalysis, and impressive efforts are made to modulate the microenvironment for improving activities and selectivity of MOFs. This review aims to draw a comprehensive picture of MOFs for coordination olefin oligomerization and (co)polymerization with respect to different transition metal active centers, various incorporation sites, and finally microenvironment modulation.</description><subject>Catalysis</subject><subject>Catalysts</subject><subject>Chromium</subject><subject>Coordination</subject><subject>coordination polymerization</subject><subject>Copolymers</subject><subject>Heterogeneous bulk polymerization</subject><subject>Iron</subject><subject>Metal-organic frameworks</subject><subject>microenvironments</subject><subject>Modulation</subject><subject>Molecular weight distribution</subject><subject>Nanotechnology</subject><subject>Oligomerization</subject><subject>Polymerization</subject><subject>polyolefin</subject><subject>Polyolefins</subject><subject>Porous materials</subject><subject>Selectivity</subject><subject>Titanium</subject><subject>Transition metals</subject><subject>Vapor phases</subject><subject>Zirconium</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkU9v1DAQxS1ERf9x5YgicdkedhnbsZMc0YoFpI0WCXqOHHtSuTh2sTdU20v5Dv2GfBKySruVuHB6o6ffPI3mEfKGwoICsPepd27BgDEQZVW-ICdUUj6XJateHmYKx-Q0pWsATllevCLHXAqeV8BPyH1tdQzof9kYfI9-m9XBDE5tbfBZ6LIat8r9-f2wiVfKW52tourxNsQfKZvVm1W6yLoQs2UI0Vg_bW0cdnYv9ir0GO3dZCtvspkOF1-D2z3b5-SoUy7h60c9I5erj9-Xn-frzacvyw_rueYFL-dC57kujBBlK7qcF0qaghtKQRopgLWYlzkaUEoDctYZbFvNVIWQSxCybPkZmU25NzH8HDBtm94mjc4pj2FIDSuEHJ_DmBjRd_-g12GIfrxupEqQvKgYHanFRI3vSyli19xE26u4ayg0-2qafTXNoZpx4e1j7ND2aA74UxcjUE3ArXW4-09c861er5_D_wITBZ2e</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Zhang, Chuan‐Lei</creator><creator>Zhou, Tao</creator><creator>Li, Yong‐Qing</creator><creator>Lu, Xin</creator><creator>Guan, Ye‐Bin</creator><creator>Cao, Yu‐Cai</creator><creator>Cao, Gui‐Ping</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4474-1973</orcidid></search><sort><creationdate>20230301</creationdate><title>Microenvironment Modulation of Metal–Organic Frameworks (MOFs) for Coordination Olefin Oligomerization and (co)Polymerization</title><author>Zhang, Chuan‐Lei ; Zhou, Tao ; Li, Yong‐Qing ; Lu, Xin ; Guan, Ye‐Bin ; Cao, Yu‐Cai ; Cao, Gui‐Ping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3738-5c44c7d558b5f437a6d73d1106d6502be484ed0aac0e32fdebbc2a9e0460568b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Catalysis</topic><topic>Catalysts</topic><topic>Chromium</topic><topic>Coordination</topic><topic>coordination polymerization</topic><topic>Copolymers</topic><topic>Heterogeneous bulk polymerization</topic><topic>Iron</topic><topic>Metal-organic frameworks</topic><topic>microenvironments</topic><topic>Modulation</topic><topic>Molecular weight distribution</topic><topic>Nanotechnology</topic><topic>Oligomerization</topic><topic>Polymerization</topic><topic>polyolefin</topic><topic>Polyolefins</topic><topic>Porous materials</topic><topic>Selectivity</topic><topic>Titanium</topic><topic>Transition metals</topic><topic>Vapor phases</topic><topic>Zirconium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Chuan‐Lei</creatorcontrib><creatorcontrib>Zhou, Tao</creatorcontrib><creatorcontrib>Li, Yong‐Qing</creatorcontrib><creatorcontrib>Lu, Xin</creatorcontrib><creatorcontrib>Guan, Ye‐Bin</creatorcontrib><creatorcontrib>Cao, Yu‐Cai</creatorcontrib><creatorcontrib>Cao, Gui‐Ping</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Chuan‐Lei</au><au>Zhou, Tao</au><au>Li, Yong‐Qing</au><au>Lu, Xin</au><au>Guan, Ye‐Bin</au><au>Cao, Yu‐Cai</au><au>Cao, Gui‐Ping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microenvironment Modulation of Metal–Organic Frameworks (MOFs) for Coordination Olefin Oligomerization and (co)Polymerization</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2023-03-01</date><risdate>2023</risdate><volume>19</volume><issue>9</issue><spage>e2205898</spage><epage>n/a</epage><pages>e2205898-n/a</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>The majority of commercial polyolefins are produced by coordination polymerization using early or late transition metal catalysts. Molecular catalysts containing these transition metals (Ti, Zr, Cr, Ni, and Fe, etc.) are loaded on supports for controlled polymerization behavior and polymer morphology in slurry or gas phase processes. Within the last few years, metal–organic frameworks (MOFs), a class of unique porous crystalline materials constructed from metal ions/clusters and organic ligands, have been designed and utilized as excellent supports for heterogeneous polymerization catalysis whose high density and uniform distribution of active sites would benefit the modulations of molecular weight distributions of high‐performance olefin oligomers and (co)polymers. Impressive efforts have been made to modulate the microenvironment surrounding the active centers at the atomic level for improved activities of MOFs‐based catalysts and controlled selectivity of olefin insertion. This review aims to draw a comprehensive picture of MOFs for coordination olefin oligomerization and (co)polymerization in the past decades with respect to different transition metal active centers, various incorporation sites, and finally microenvironment modulation. In consideration of more efforts are needed to overcome challenges for further industrial and commercial application, a brief outlook is provided.
Metal–organic frameworks (MOFs) are designed as excellent supports for heterogeneous polymerization catalysis, and impressive efforts are made to modulate the microenvironment for improving activities and selectivity of MOFs. This review aims to draw a comprehensive picture of MOFs for coordination olefin oligomerization and (co)polymerization with respect to different transition metal active centers, various incorporation sites, and finally microenvironment modulation.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>36534903</pmid><doi>10.1002/smll.202205898</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-4474-1973</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1613-6810 |
ispartof | Small (Weinheim an der Bergstrasse, Germany), 2023-03, Vol.19 (9), p.e2205898-n/a |
issn | 1613-6810 1613-6829 |
language | eng |
recordid | cdi_proquest_miscellaneous_2756124225 |
source | Access via Wiley Online Library |
subjects | Catalysis Catalysts Chromium Coordination coordination polymerization Copolymers Heterogeneous bulk polymerization Iron Metal-organic frameworks microenvironments Modulation Molecular weight distribution Nanotechnology Oligomerization Polymerization polyolefin Polyolefins Porous materials Selectivity Titanium Transition metals Vapor phases Zirconium |
title | Microenvironment Modulation of Metal–Organic Frameworks (MOFs) for Coordination Olefin Oligomerization and (co)Polymerization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-01T07%3A41%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microenvironment%20Modulation%20of%20Metal%E2%80%93Organic%20Frameworks%20(MOFs)%20for%20Coordination%20Olefin%20Oligomerization%20and%20(co)Polymerization&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Zhang,%20Chuan%E2%80%90Lei&rft.date=2023-03-01&rft.volume=19&rft.issue=9&rft.spage=e2205898&rft.epage=n/a&rft.pages=e2205898-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202205898&rft_dat=%3Cproquest_cross%3E2780637921%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2780637921&rft_id=info:pmid/36534903&rfr_iscdi=true |