Flexible cloglog links for binomial regression models as an alternative for imbalanced medical data

The complementary log‐log link was originally introduced in 1922 to R. A. Fisher, long before the logit and probit links. While the last two links are symmetric, the complementary log‐log link is an asymmetrical link without a parameter associated with it. Several asymmetrical links with an extra pa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biometrical journal 2023-03, Vol.65 (3), p.e2100325-n/a
Hauptverfasser: Alves, Jessica S.B., Bazán, Jorge L., Arellano‐Valle, Reinaldo B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 3
container_start_page e2100325
container_title Biometrical journal
container_volume 65
creator Alves, Jessica S.B.
Bazán, Jorge L.
Arellano‐Valle, Reinaldo B.
description The complementary log‐log link was originally introduced in 1922 to R. A. Fisher, long before the logit and probit links. While the last two links are symmetric, the complementary log‐log link is an asymmetrical link without a parameter associated with it. Several asymmetrical links with an extra parameter were proposed in the literature over last few years to deal with imbalanced data in binomial regression (when one of the classes is much smaller than the other); however, these do not necessarily have the cloglog link as a special case, with the exception of the link based on the generalized extreme value distribution. In this paper, we introduce flexible cloglog links for modeling binomial regression models that include an extra parameter associated with the link that explains some unbalancing for binomial outcomes. For all cases, the cloglog is a special case or the reciprocal version loglog link is obtained. A Bayesian Markov chain Monte Carlo inference approach is developed. Simulations study to evaluate the performance of the proposed algorithm is conducted and prior sensitivity analysis for the extra parameter shows that a uniform prior is the most convenient for all models. Additionally, two applications in medical data (age at menarche and pulmonary infection) illustrate the advantages of the proposed models.
doi_str_mv 10.1002/bimj.202100325
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2755804839</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2755804839</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3236-16e3cf6a786ff2cef57c9e9b2b58977ef9054b6d78854072a2ab723e88910a283</originalsourceid><addsrcrecordid>eNqFkD1vFDEURS0EIptAS4ks0aSZxfP8XUJEQlCiNFCPbM-byItnHOxdIP8-XjakoEF6kmXr3KvnQ8ibnq17xuC9j_NmDQzahYN8Rla9hL4TjKvnZNWeeMeN0EfkuNYNY8wyAS_JEVcSrLJiRcJ5wt_RJ6Qh5ds2NMXle6VTLtTHJc_RJVrwtmCtMS90ziOmSl2bhbq0xbK4bfyJfwJx9i65JeBIZxxjaNHRbd0r8mJyqeLrx_OEfDv_9PXsc3d1c3F59uGqC21P1fUKeZiU00ZNEwScpA4WrQcvjdUaJ8uk8GrUxkjBNDhwXgNHY2zPHBh-Qk4PvXcl_9hh3Q5zrAFTWwnzrg6gpTRMGG4b-u4fdJN37StpTxkJQhkFjVofqFByrQWn4a7E2ZX7oWfDXv-w1z886W-Bt4-1O98MPOF_fTdAHIBfMeH9f-qGj5fXX0D0ij8ATB-QFw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2785246862</pqid></control><display><type>article</type><title>Flexible cloglog links for binomial regression models as an alternative for imbalanced medical data</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Alves, Jessica S.B. ; Bazán, Jorge L. ; Arellano‐Valle, Reinaldo B.</creator><creatorcontrib>Alves, Jessica S.B. ; Bazán, Jorge L. ; Arellano‐Valle, Reinaldo B.</creatorcontrib><description>The complementary log‐log link was originally introduced in 1922 to R. A. Fisher, long before the logit and probit links. While the last two links are symmetric, the complementary log‐log link is an asymmetrical link without a parameter associated with it. Several asymmetrical links with an extra parameter were proposed in the literature over last few years to deal with imbalanced data in binomial regression (when one of the classes is much smaller than the other); however, these do not necessarily have the cloglog link as a special case, with the exception of the link based on the generalized extreme value distribution. In this paper, we introduce flexible cloglog links for modeling binomial regression models that include an extra parameter associated with the link that explains some unbalancing for binomial outcomes. For all cases, the cloglog is a special case or the reciprocal version loglog link is obtained. A Bayesian Markov chain Monte Carlo inference approach is developed. Simulations study to evaluate the performance of the proposed algorithm is conducted and prior sensitivity analysis for the extra parameter shows that a uniform prior is the most convenient for all models. Additionally, two applications in medical data (age at menarche and pulmonary infection) illustrate the advantages of the proposed models.</description><identifier>ISSN: 0323-3847</identifier><identifier>EISSN: 1521-4036</identifier><identifier>DOI: 10.1002/bimj.202100325</identifier><identifier>PMID: 36529694</identifier><language>eng</language><publisher>Germany: Wiley - VCH Verlag GmbH &amp; Co. KGaA</publisher><subject>Algorithms ; Asymmetry ; Bayes Theorem ; Bayesian analysis ; Bayesian estimation ; binomial regression ; Computer Simulation ; Extreme values ; Female ; flexible cloglog links ; Humans ; imbalanced data ; Links ; Markov Chains ; Mathematical models ; medical data ; Medical research ; Menarche ; Models, Statistical ; Monte Carlo simulation ; Parameter sensitivity ; Regression analysis ; Regression models ; Sensitivity analysis</subject><ispartof>Biometrical journal, 2023-03, Vol.65 (3), p.e2100325-n/a</ispartof><rights>2022 Wiley‐VCH GmbH.</rights><rights>2022 Wiley-VCH GmbH.</rights><rights>2023 Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3236-16e3cf6a786ff2cef57c9e9b2b58977ef9054b6d78854072a2ab723e88910a283</cites><orcidid>0000-0003-3918-8795</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbimj.202100325$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbimj.202100325$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,782,786,1419,27931,27932,45581,45582</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36529694$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Alves, Jessica S.B.</creatorcontrib><creatorcontrib>Bazán, Jorge L.</creatorcontrib><creatorcontrib>Arellano‐Valle, Reinaldo B.</creatorcontrib><title>Flexible cloglog links for binomial regression models as an alternative for imbalanced medical data</title><title>Biometrical journal</title><addtitle>Biom J</addtitle><description>The complementary log‐log link was originally introduced in 1922 to R. A. Fisher, long before the logit and probit links. While the last two links are symmetric, the complementary log‐log link is an asymmetrical link without a parameter associated with it. Several asymmetrical links with an extra parameter were proposed in the literature over last few years to deal with imbalanced data in binomial regression (when one of the classes is much smaller than the other); however, these do not necessarily have the cloglog link as a special case, with the exception of the link based on the generalized extreme value distribution. In this paper, we introduce flexible cloglog links for modeling binomial regression models that include an extra parameter associated with the link that explains some unbalancing for binomial outcomes. For all cases, the cloglog is a special case or the reciprocal version loglog link is obtained. A Bayesian Markov chain Monte Carlo inference approach is developed. Simulations study to evaluate the performance of the proposed algorithm is conducted and prior sensitivity analysis for the extra parameter shows that a uniform prior is the most convenient for all models. Additionally, two applications in medical data (age at menarche and pulmonary infection) illustrate the advantages of the proposed models.</description><subject>Algorithms</subject><subject>Asymmetry</subject><subject>Bayes Theorem</subject><subject>Bayesian analysis</subject><subject>Bayesian estimation</subject><subject>binomial regression</subject><subject>Computer Simulation</subject><subject>Extreme values</subject><subject>Female</subject><subject>flexible cloglog links</subject><subject>Humans</subject><subject>imbalanced data</subject><subject>Links</subject><subject>Markov Chains</subject><subject>Mathematical models</subject><subject>medical data</subject><subject>Medical research</subject><subject>Menarche</subject><subject>Models, Statistical</subject><subject>Monte Carlo simulation</subject><subject>Parameter sensitivity</subject><subject>Regression analysis</subject><subject>Regression models</subject><subject>Sensitivity analysis</subject><issn>0323-3847</issn><issn>1521-4036</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkD1vFDEURS0EIptAS4ks0aSZxfP8XUJEQlCiNFCPbM-byItnHOxdIP8-XjakoEF6kmXr3KvnQ8ibnq17xuC9j_NmDQzahYN8Rla9hL4TjKvnZNWeeMeN0EfkuNYNY8wyAS_JEVcSrLJiRcJ5wt_RJ6Qh5ds2NMXle6VTLtTHJc_RJVrwtmCtMS90ziOmSl2bhbq0xbK4bfyJfwJx9i65JeBIZxxjaNHRbd0r8mJyqeLrx_OEfDv_9PXsc3d1c3F59uGqC21P1fUKeZiU00ZNEwScpA4WrQcvjdUaJ8uk8GrUxkjBNDhwXgNHY2zPHBh-Qk4PvXcl_9hh3Q5zrAFTWwnzrg6gpTRMGG4b-u4fdJN37StpTxkJQhkFjVofqFByrQWn4a7E2ZX7oWfDXv-w1z886W-Bt4-1O98MPOF_fTdAHIBfMeH9f-qGj5fXX0D0ij8ATB-QFw</recordid><startdate>202303</startdate><enddate>202303</enddate><creator>Alves, Jessica S.B.</creator><creator>Bazán, Jorge L.</creator><creator>Arellano‐Valle, Reinaldo B.</creator><general>Wiley - VCH Verlag GmbH &amp; Co. KGaA</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3918-8795</orcidid></search><sort><creationdate>202303</creationdate><title>Flexible cloglog links for binomial regression models as an alternative for imbalanced medical data</title><author>Alves, Jessica S.B. ; Bazán, Jorge L. ; Arellano‐Valle, Reinaldo B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3236-16e3cf6a786ff2cef57c9e9b2b58977ef9054b6d78854072a2ab723e88910a283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Asymmetry</topic><topic>Bayes Theorem</topic><topic>Bayesian analysis</topic><topic>Bayesian estimation</topic><topic>binomial regression</topic><topic>Computer Simulation</topic><topic>Extreme values</topic><topic>Female</topic><topic>flexible cloglog links</topic><topic>Humans</topic><topic>imbalanced data</topic><topic>Links</topic><topic>Markov Chains</topic><topic>Mathematical models</topic><topic>medical data</topic><topic>Medical research</topic><topic>Menarche</topic><topic>Models, Statistical</topic><topic>Monte Carlo simulation</topic><topic>Parameter sensitivity</topic><topic>Regression analysis</topic><topic>Regression models</topic><topic>Sensitivity analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alves, Jessica S.B.</creatorcontrib><creatorcontrib>Bazán, Jorge L.</creatorcontrib><creatorcontrib>Arellano‐Valle, Reinaldo B.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biometrical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alves, Jessica S.B.</au><au>Bazán, Jorge L.</au><au>Arellano‐Valle, Reinaldo B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flexible cloglog links for binomial regression models as an alternative for imbalanced medical data</atitle><jtitle>Biometrical journal</jtitle><addtitle>Biom J</addtitle><date>2023-03</date><risdate>2023</risdate><volume>65</volume><issue>3</issue><spage>e2100325</spage><epage>n/a</epage><pages>e2100325-n/a</pages><issn>0323-3847</issn><eissn>1521-4036</eissn><abstract>The complementary log‐log link was originally introduced in 1922 to R. A. Fisher, long before the logit and probit links. While the last two links are symmetric, the complementary log‐log link is an asymmetrical link without a parameter associated with it. Several asymmetrical links with an extra parameter were proposed in the literature over last few years to deal with imbalanced data in binomial regression (when one of the classes is much smaller than the other); however, these do not necessarily have the cloglog link as a special case, with the exception of the link based on the generalized extreme value distribution. In this paper, we introduce flexible cloglog links for modeling binomial regression models that include an extra parameter associated with the link that explains some unbalancing for binomial outcomes. For all cases, the cloglog is a special case or the reciprocal version loglog link is obtained. A Bayesian Markov chain Monte Carlo inference approach is developed. Simulations study to evaluate the performance of the proposed algorithm is conducted and prior sensitivity analysis for the extra parameter shows that a uniform prior is the most convenient for all models. Additionally, two applications in medical data (age at menarche and pulmonary infection) illustrate the advantages of the proposed models.</abstract><cop>Germany</cop><pub>Wiley - VCH Verlag GmbH &amp; Co. KGaA</pub><pmid>36529694</pmid><doi>10.1002/bimj.202100325</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-3918-8795</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0323-3847
ispartof Biometrical journal, 2023-03, Vol.65 (3), p.e2100325-n/a
issn 0323-3847
1521-4036
language eng
recordid cdi_proquest_miscellaneous_2755804839
source MEDLINE; Access via Wiley Online Library
subjects Algorithms
Asymmetry
Bayes Theorem
Bayesian analysis
Bayesian estimation
binomial regression
Computer Simulation
Extreme values
Female
flexible cloglog links
Humans
imbalanced data
Links
Markov Chains
Mathematical models
medical data
Medical research
Menarche
Models, Statistical
Monte Carlo simulation
Parameter sensitivity
Regression analysis
Regression models
Sensitivity analysis
title Flexible cloglog links for binomial regression models as an alternative for imbalanced medical data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T20%3A05%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flexible%20cloglog%20links%20for%20binomial%20regression%20models%20as%20an%20alternative%20for%20imbalanced%20medical%20data&rft.jtitle=Biometrical%20journal&rft.au=Alves,%20Jessica%20S.B.&rft.date=2023-03&rft.volume=65&rft.issue=3&rft.spage=e2100325&rft.epage=n/a&rft.pages=e2100325-n/a&rft.issn=0323-3847&rft.eissn=1521-4036&rft_id=info:doi/10.1002/bimj.202100325&rft_dat=%3Cproquest_cross%3E2755804839%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2785246862&rft_id=info:pmid/36529694&rfr_iscdi=true