Depth map guided triplet network for deepfake face detection

The widespread dissemination of facial forgery technology has brought many ethical issues and aroused widespread concern in society. Most research today treats deepfake detection as a fine grained classification task, which however makes it difficult to enable the feature extractor to express the fe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural networks 2023-02, Vol.159, p.34-42
Hauptverfasser: Liang, Buyun, Wang, Zhongyuan, Huang, Baojin, Zou, Qin, Wang, Qian, Liang, Jingjing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 42
container_issue
container_start_page 34
container_title Neural networks
container_volume 159
creator Liang, Buyun
Wang, Zhongyuan
Huang, Baojin
Zou, Qin
Wang, Qian
Liang, Jingjing
description The widespread dissemination of facial forgery technology has brought many ethical issues and aroused widespread concern in society. Most research today treats deepfake detection as a fine grained classification task, which however makes it difficult to enable the feature extractor to express the features related to the real and fake attributes. This paper proposes a depth map guided triplet network, which mainly consists of a depth prediction network and a triplet feature extraction network. The depth map predicted by the depth prediction network can effectively reflect the differences between real and fake faces in discontinuity, inconsistent illumination, and blurring, thus in favor of deepfake detection. Regardless of the facial appearance changes induced by deepfake, we argue that real and fake faces should correspond to their respective latent feature spaces. Particularly, the pair of real faces (original–target) remain close in the latent feature space, while the two pairs of real–fake faces (original–fake, target–fake) instead keep faraway. Following this paradigm, we suggest a triplet loss supervision network to extract the sufficiently discriminative deep features, which minimizes the distance of the original–target pair and maximize the distance of the original–fake (also target–fake) pair. The extensive results on public FaceForensics++ and Celeb-DF datasets validate the superiority of our method over competitors.
doi_str_mv 10.1016/j.neunet.2022.11.031
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2755581843</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0893608022004725</els_id><sourcerecordid>2755581843</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-5abc5c73106df07e9a120f5707c69cf44537d542f09492d7bc3daae454acb4153</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMozjj6BiJdumnNtWlBBBmvMOBG1yFNTjRzaWvSKr69GUZdujoc-M75-T-ETgkuCCblxbJoYWxhKCimtCCkwIzsoSmpZJ1TWdF9NMVVzfISV3iCjmJcYozLirNDNGGlSAjjU3R5A_3wlm10n72O3oLNhuD7NQxZev3ZhVXmupBZgN7pFWROG0jbAGbwXXuMDpxeRzj5mTP0cnf7PH_IF0_3j_PrRW5YSYdc6MYIIxnBpXVYQq0JxU5ILE1ZG8e5YNIKTh2ueU2tbAyzWgMXXJuGE8Fm6Hz3tw_d-whxUBsfDazXuoVujIpKIURFUreE8h1qQhdjAKf64Dc6fCmC1dabWqqdN7X1pghRyVs6O_tJGJsN2L-jX1EJuNoBkHp-eAgqGg-tAetDkqFs5_9P-AY0yn_O</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2755581843</pqid></control><display><type>article</type><title>Depth map guided triplet network for deepfake face detection</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Liang, Buyun ; Wang, Zhongyuan ; Huang, Baojin ; Zou, Qin ; Wang, Qian ; Liang, Jingjing</creator><creatorcontrib>Liang, Buyun ; Wang, Zhongyuan ; Huang, Baojin ; Zou, Qin ; Wang, Qian ; Liang, Jingjing</creatorcontrib><description>The widespread dissemination of facial forgery technology has brought many ethical issues and aroused widespread concern in society. Most research today treats deepfake detection as a fine grained classification task, which however makes it difficult to enable the feature extractor to express the features related to the real and fake attributes. This paper proposes a depth map guided triplet network, which mainly consists of a depth prediction network and a triplet feature extraction network. The depth map predicted by the depth prediction network can effectively reflect the differences between real and fake faces in discontinuity, inconsistent illumination, and blurring, thus in favor of deepfake detection. Regardless of the facial appearance changes induced by deepfake, we argue that real and fake faces should correspond to their respective latent feature spaces. Particularly, the pair of real faces (original–target) remain close in the latent feature space, while the two pairs of real–fake faces (original–fake, target–fake) instead keep faraway. Following this paradigm, we suggest a triplet loss supervision network to extract the sufficiently discriminative deep features, which minimizes the distance of the original–target pair and maximize the distance of the original–fake (also target–fake) pair. The extensive results on public FaceForensics++ and Celeb-DF datasets validate the superiority of our method over competitors.</description><identifier>ISSN: 0893-6080</identifier><identifier>EISSN: 1879-2782</identifier><identifier>DOI: 10.1016/j.neunet.2022.11.031</identifier><identifier>PMID: 36527834</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Deep Learning ; Deepfake detection ; Depth map ; Lighting ; Triplet network</subject><ispartof>Neural networks, 2023-02, Vol.159, p.34-42</ispartof><rights>2022 Elsevier Ltd</rights><rights>Copyright © 2022 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-5abc5c73106df07e9a120f5707c69cf44537d542f09492d7bc3daae454acb4153</citedby><cites>FETCH-LOGICAL-c362t-5abc5c73106df07e9a120f5707c69cf44537d542f09492d7bc3daae454acb4153</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.neunet.2022.11.031$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36527834$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liang, Buyun</creatorcontrib><creatorcontrib>Wang, Zhongyuan</creatorcontrib><creatorcontrib>Huang, Baojin</creatorcontrib><creatorcontrib>Zou, Qin</creatorcontrib><creatorcontrib>Wang, Qian</creatorcontrib><creatorcontrib>Liang, Jingjing</creatorcontrib><title>Depth map guided triplet network for deepfake face detection</title><title>Neural networks</title><addtitle>Neural Netw</addtitle><description>The widespread dissemination of facial forgery technology has brought many ethical issues and aroused widespread concern in society. Most research today treats deepfake detection as a fine grained classification task, which however makes it difficult to enable the feature extractor to express the features related to the real and fake attributes. This paper proposes a depth map guided triplet network, which mainly consists of a depth prediction network and a triplet feature extraction network. The depth map predicted by the depth prediction network can effectively reflect the differences between real and fake faces in discontinuity, inconsistent illumination, and blurring, thus in favor of deepfake detection. Regardless of the facial appearance changes induced by deepfake, we argue that real and fake faces should correspond to their respective latent feature spaces. Particularly, the pair of real faces (original–target) remain close in the latent feature space, while the two pairs of real–fake faces (original–fake, target–fake) instead keep faraway. Following this paradigm, we suggest a triplet loss supervision network to extract the sufficiently discriminative deep features, which minimizes the distance of the original–target pair and maximize the distance of the original–fake (also target–fake) pair. The extensive results on public FaceForensics++ and Celeb-DF datasets validate the superiority of our method over competitors.</description><subject>Deep Learning</subject><subject>Deepfake detection</subject><subject>Depth map</subject><subject>Lighting</subject><subject>Triplet network</subject><issn>0893-6080</issn><issn>1879-2782</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMtKxDAUhoMozjj6BiJdumnNtWlBBBmvMOBG1yFNTjRzaWvSKr69GUZdujoc-M75-T-ETgkuCCblxbJoYWxhKCimtCCkwIzsoSmpZJ1TWdF9NMVVzfISV3iCjmJcYozLirNDNGGlSAjjU3R5A_3wlm10n72O3oLNhuD7NQxZev3ZhVXmupBZgN7pFWROG0jbAGbwXXuMDpxeRzj5mTP0cnf7PH_IF0_3j_PrRW5YSYdc6MYIIxnBpXVYQq0JxU5ILE1ZG8e5YNIKTh2ueU2tbAyzWgMXXJuGE8Fm6Hz3tw_d-whxUBsfDazXuoVujIpKIURFUreE8h1qQhdjAKf64Dc6fCmC1dabWqqdN7X1pghRyVs6O_tJGJsN2L-jX1EJuNoBkHp-eAgqGg-tAetDkqFs5_9P-AY0yn_O</recordid><startdate>202302</startdate><enddate>202302</enddate><creator>Liang, Buyun</creator><creator>Wang, Zhongyuan</creator><creator>Huang, Baojin</creator><creator>Zou, Qin</creator><creator>Wang, Qian</creator><creator>Liang, Jingjing</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202302</creationdate><title>Depth map guided triplet network for deepfake face detection</title><author>Liang, Buyun ; Wang, Zhongyuan ; Huang, Baojin ; Zou, Qin ; Wang, Qian ; Liang, Jingjing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-5abc5c73106df07e9a120f5707c69cf44537d542f09492d7bc3daae454acb4153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Deep Learning</topic><topic>Deepfake detection</topic><topic>Depth map</topic><topic>Lighting</topic><topic>Triplet network</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liang, Buyun</creatorcontrib><creatorcontrib>Wang, Zhongyuan</creatorcontrib><creatorcontrib>Huang, Baojin</creatorcontrib><creatorcontrib>Zou, Qin</creatorcontrib><creatorcontrib>Wang, Qian</creatorcontrib><creatorcontrib>Liang, Jingjing</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Neural networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liang, Buyun</au><au>Wang, Zhongyuan</au><au>Huang, Baojin</au><au>Zou, Qin</au><au>Wang, Qian</au><au>Liang, Jingjing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Depth map guided triplet network for deepfake face detection</atitle><jtitle>Neural networks</jtitle><addtitle>Neural Netw</addtitle><date>2023-02</date><risdate>2023</risdate><volume>159</volume><spage>34</spage><epage>42</epage><pages>34-42</pages><issn>0893-6080</issn><eissn>1879-2782</eissn><abstract>The widespread dissemination of facial forgery technology has brought many ethical issues and aroused widespread concern in society. Most research today treats deepfake detection as a fine grained classification task, which however makes it difficult to enable the feature extractor to express the features related to the real and fake attributes. This paper proposes a depth map guided triplet network, which mainly consists of a depth prediction network and a triplet feature extraction network. The depth map predicted by the depth prediction network can effectively reflect the differences between real and fake faces in discontinuity, inconsistent illumination, and blurring, thus in favor of deepfake detection. Regardless of the facial appearance changes induced by deepfake, we argue that real and fake faces should correspond to their respective latent feature spaces. Particularly, the pair of real faces (original–target) remain close in the latent feature space, while the two pairs of real–fake faces (original–fake, target–fake) instead keep faraway. Following this paradigm, we suggest a triplet loss supervision network to extract the sufficiently discriminative deep features, which minimizes the distance of the original–target pair and maximize the distance of the original–fake (also target–fake) pair. The extensive results on public FaceForensics++ and Celeb-DF datasets validate the superiority of our method over competitors.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>36527834</pmid><doi>10.1016/j.neunet.2022.11.031</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0893-6080
ispartof Neural networks, 2023-02, Vol.159, p.34-42
issn 0893-6080
1879-2782
language eng
recordid cdi_proquest_miscellaneous_2755581843
source MEDLINE; Elsevier ScienceDirect Journals
subjects Deep Learning
Deepfake detection
Depth map
Lighting
Triplet network
title Depth map guided triplet network for deepfake face detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T19%3A47%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Depth%20map%20guided%20triplet%20network%20for%20deepfake%20face%20detection&rft.jtitle=Neural%20networks&rft.au=Liang,%20Buyun&rft.date=2023-02&rft.volume=159&rft.spage=34&rft.epage=42&rft.pages=34-42&rft.issn=0893-6080&rft.eissn=1879-2782&rft_id=info:doi/10.1016/j.neunet.2022.11.031&rft_dat=%3Cproquest_cross%3E2755581843%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2755581843&rft_id=info:pmid/36527834&rft_els_id=S0893608022004725&rfr_iscdi=true