Room‐Temperature Gate‐Tunable Nonreciprocal Charge Transport in Lattice‐Matched InSb/CdTe Heterostructures
Symmetry manipulation can be used to effectively tailor the physical order in solid‐state systems. With the breaking of both the inversion and time‐reversal symmetries, nonreciprocal magneto‐transport may arise in nonmagnetic systems to enrich spin–orbit effects. Here, the observation of unidirectio...
Gespeichert in:
Veröffentlicht in: | Advanced materials (Weinheim) 2023-01, Vol.35 (3), p.e2207322-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 3 |
container_start_page | e2207322 |
container_title | Advanced materials (Weinheim) |
container_volume | 35 |
creator | Li, Lun Wu, Yuyang Liu, Xiaoyang Liu, Jiuming Ruan, Hanzhi Zhi, Zhenghang Zhang, Yong Huang, Puyang Ji, Yuchen Tang, Chenjia Yang, Yumeng Che, Renchao Kou, Xufeng |
description | Symmetry manipulation can be used to effectively tailor the physical order in solid‐state systems. With the breaking of both the inversion and time‐reversal symmetries, nonreciprocal magneto‐transport may arise in nonmagnetic systems to enrich spin–orbit effects. Here, the observation of unidirectional magnetoresistance (UMR) in lattice‐matched InSb/CdTe films is investigated up to room temperature. Benefiting from the strong built‐in electric field of 0.13 V nm−1 in the heterojunction region, the resulting Rashba‐type spin–orbit coupling and quantum confinement result in a distinct sinusoidal UMR signal with a nonreciprocal coefficient that is 1–2 orders of magnitude larger than most non‐centrosymmetric materials at 298 K. Moreover, this heterostructure configuration enables highly efficient gate tuning of the rectification response, wherein the UMR amplitude is enhanced by 40%. The results of this study advocate the use of narrow‐bandgap semiconductor‐based hybrid systems with robust spin textures as suitable platforms for the pursuit of controllable chiral spin–orbit applications.
Lattice‐matched InSb/CdTe heterostructures are utilized to tailor the nonreciprocal charge transport up to room temperature. Benefiting from both the inversion symmetry breaking and interfacial Rashba spin–orbit coupling, this nonmagnetic hybrid system not only warrants a pronounced unidirectional magnetoresistance effect, but also enables highly efficient gate tuning of the rectification response, hence offering feasible strategies for controllable spin–orbit applications. |
doi_str_mv | 10.1002/adma.202207322 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2755575038</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2755575038</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3732-b1a90c74f79c00a404ac7fee213454cdc4d708730cbf54e7dafc2493ac12b2283</originalsourceid><addsrcrecordid>eNqFkU1r20AQhpeS0Dhurz0WQS-5yB7th9Z7NE6aBJwEUvcsRqtRo6Cv7q4IufUn9Df2l0TC-YBechoYnnmYmZexLwksEgC-xKLBBQfOQQvOP7BZongSSzDqgM3ACBWbVK6O2LH39wBgUkg_siORKp4qI2esv-265t-fvztqenIYBkfROQaaWkOLeU3Rddc6slXvOot1tLlD94uincPW950LUdVGWwyhstPMFQZ7R0V02f7Il5tiR9EFBXKdD26wk9x_Yocl1p4-P9c5-_n9bLe5iLc355eb9Ta2YrwkzhM0YLUstbEAKEGi1SURT4RU0hZWFhpWWoDNSyVJF1haLo1Am_Cc85WYs5O9d9z790A-ZE3lLdU1ttQNPuNaKaUViAn99h963w2uHbcbqTQ1XHOQI7XYU3Y8xzsqs95VDbrHLIFsyiKbsshesxgHvj5rh7yh4hV_ef4ImD3wUNX0-I4uW59erd_kT_7mmSk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2766927204</pqid></control><display><type>article</type><title>Room‐Temperature Gate‐Tunable Nonreciprocal Charge Transport in Lattice‐Matched InSb/CdTe Heterostructures</title><source>Wiley Journals</source><creator>Li, Lun ; Wu, Yuyang ; Liu, Xiaoyang ; Liu, Jiuming ; Ruan, Hanzhi ; Zhi, Zhenghang ; Zhang, Yong ; Huang, Puyang ; Ji, Yuchen ; Tang, Chenjia ; Yang, Yumeng ; Che, Renchao ; Kou, Xufeng</creator><creatorcontrib>Li, Lun ; Wu, Yuyang ; Liu, Xiaoyang ; Liu, Jiuming ; Ruan, Hanzhi ; Zhi, Zhenghang ; Zhang, Yong ; Huang, Puyang ; Ji, Yuchen ; Tang, Chenjia ; Yang, Yumeng ; Che, Renchao ; Kou, Xufeng</creatorcontrib><description>Symmetry manipulation can be used to effectively tailor the physical order in solid‐state systems. With the breaking of both the inversion and time‐reversal symmetries, nonreciprocal magneto‐transport may arise in nonmagnetic systems to enrich spin–orbit effects. Here, the observation of unidirectional magnetoresistance (UMR) in lattice‐matched InSb/CdTe films is investigated up to room temperature. Benefiting from the strong built‐in electric field of 0.13 V nm−1 in the heterojunction region, the resulting Rashba‐type spin–orbit coupling and quantum confinement result in a distinct sinusoidal UMR signal with a nonreciprocal coefficient that is 1–2 orders of magnitude larger than most non‐centrosymmetric materials at 298 K. Moreover, this heterostructure configuration enables highly efficient gate tuning of the rectification response, wherein the UMR amplitude is enhanced by 40%. The results of this study advocate the use of narrow‐bandgap semiconductor‐based hybrid systems with robust spin textures as suitable platforms for the pursuit of controllable chiral spin–orbit applications.
Lattice‐matched InSb/CdTe heterostructures are utilized to tailor the nonreciprocal charge transport up to room temperature. Benefiting from both the inversion symmetry breaking and interfacial Rashba spin–orbit coupling, this nonmagnetic hybrid system not only warrants a pronounced unidirectional magnetoresistance effect, but also enables highly efficient gate tuning of the rectification response, hence offering feasible strategies for controllable spin–orbit applications.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202207322</identifier><identifier>PMID: 36526594</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Cadmium tellurides ; Charge transport ; Controllability ; Electric fields ; electric‐field control ; Heterojunctions ; Heterostructures ; Hybrid systems ; Indium antimonide ; interfacial Rashba effect ; Intermetallic compounds ; Lattice matching ; Magnetoresistance ; Magnetoresistivity ; Materials science ; narrow‐bandgap semiconductor heterostructures ; nonreciprocal transport ; Quantum confinement ; Room temperature ; Spin-orbit interactions ; spin–orbit coupling ; System effectiveness</subject><ispartof>Advanced materials (Weinheim), 2023-01, Vol.35 (3), p.e2207322-n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><rights>2022 Wiley-VCH GmbH.</rights><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3732-b1a90c74f79c00a404ac7fee213454cdc4d708730cbf54e7dafc2493ac12b2283</citedby><cites>FETCH-LOGICAL-c3732-b1a90c74f79c00a404ac7fee213454cdc4d708730cbf54e7dafc2493ac12b2283</cites><orcidid>0000-0002-8860-5105</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202207322$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202207322$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36526594$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Lun</creatorcontrib><creatorcontrib>Wu, Yuyang</creatorcontrib><creatorcontrib>Liu, Xiaoyang</creatorcontrib><creatorcontrib>Liu, Jiuming</creatorcontrib><creatorcontrib>Ruan, Hanzhi</creatorcontrib><creatorcontrib>Zhi, Zhenghang</creatorcontrib><creatorcontrib>Zhang, Yong</creatorcontrib><creatorcontrib>Huang, Puyang</creatorcontrib><creatorcontrib>Ji, Yuchen</creatorcontrib><creatorcontrib>Tang, Chenjia</creatorcontrib><creatorcontrib>Yang, Yumeng</creatorcontrib><creatorcontrib>Che, Renchao</creatorcontrib><creatorcontrib>Kou, Xufeng</creatorcontrib><title>Room‐Temperature Gate‐Tunable Nonreciprocal Charge Transport in Lattice‐Matched InSb/CdTe Heterostructures</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Symmetry manipulation can be used to effectively tailor the physical order in solid‐state systems. With the breaking of both the inversion and time‐reversal symmetries, nonreciprocal magneto‐transport may arise in nonmagnetic systems to enrich spin–orbit effects. Here, the observation of unidirectional magnetoresistance (UMR) in lattice‐matched InSb/CdTe films is investigated up to room temperature. Benefiting from the strong built‐in electric field of 0.13 V nm−1 in the heterojunction region, the resulting Rashba‐type spin–orbit coupling and quantum confinement result in a distinct sinusoidal UMR signal with a nonreciprocal coefficient that is 1–2 orders of magnitude larger than most non‐centrosymmetric materials at 298 K. Moreover, this heterostructure configuration enables highly efficient gate tuning of the rectification response, wherein the UMR amplitude is enhanced by 40%. The results of this study advocate the use of narrow‐bandgap semiconductor‐based hybrid systems with robust spin textures as suitable platforms for the pursuit of controllable chiral spin–orbit applications.
Lattice‐matched InSb/CdTe heterostructures are utilized to tailor the nonreciprocal charge transport up to room temperature. Benefiting from both the inversion symmetry breaking and interfacial Rashba spin–orbit coupling, this nonmagnetic hybrid system not only warrants a pronounced unidirectional magnetoresistance effect, but also enables highly efficient gate tuning of the rectification response, hence offering feasible strategies for controllable spin–orbit applications.</description><subject>Cadmium tellurides</subject><subject>Charge transport</subject><subject>Controllability</subject><subject>Electric fields</subject><subject>electric‐field control</subject><subject>Heterojunctions</subject><subject>Heterostructures</subject><subject>Hybrid systems</subject><subject>Indium antimonide</subject><subject>interfacial Rashba effect</subject><subject>Intermetallic compounds</subject><subject>Lattice matching</subject><subject>Magnetoresistance</subject><subject>Magnetoresistivity</subject><subject>Materials science</subject><subject>narrow‐bandgap semiconductor heterostructures</subject><subject>nonreciprocal transport</subject><subject>Quantum confinement</subject><subject>Room temperature</subject><subject>Spin-orbit interactions</subject><subject>spin–orbit coupling</subject><subject>System effectiveness</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkU1r20AQhpeS0Dhurz0WQS-5yB7th9Z7NE6aBJwEUvcsRqtRo6Cv7q4IufUn9Df2l0TC-YBechoYnnmYmZexLwksEgC-xKLBBQfOQQvOP7BZongSSzDqgM3ACBWbVK6O2LH39wBgUkg_siORKp4qI2esv-265t-fvztqenIYBkfROQaaWkOLeU3Rddc6slXvOot1tLlD94uincPW950LUdVGWwyhstPMFQZ7R0V02f7Il5tiR9EFBXKdD26wk9x_Yocl1p4-P9c5-_n9bLe5iLc355eb9Ta2YrwkzhM0YLUstbEAKEGi1SURT4RU0hZWFhpWWoDNSyVJF1haLo1Am_Cc85WYs5O9d9z790A-ZE3lLdU1ttQNPuNaKaUViAn99h963w2uHbcbqTQ1XHOQI7XYU3Y8xzsqs95VDbrHLIFsyiKbsshesxgHvj5rh7yh4hV_ef4ImD3wUNX0-I4uW59erd_kT_7mmSk</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Li, Lun</creator><creator>Wu, Yuyang</creator><creator>Liu, Xiaoyang</creator><creator>Liu, Jiuming</creator><creator>Ruan, Hanzhi</creator><creator>Zhi, Zhenghang</creator><creator>Zhang, Yong</creator><creator>Huang, Puyang</creator><creator>Ji, Yuchen</creator><creator>Tang, Chenjia</creator><creator>Yang, Yumeng</creator><creator>Che, Renchao</creator><creator>Kou, Xufeng</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8860-5105</orcidid></search><sort><creationdate>20230101</creationdate><title>Room‐Temperature Gate‐Tunable Nonreciprocal Charge Transport in Lattice‐Matched InSb/CdTe Heterostructures</title><author>Li, Lun ; Wu, Yuyang ; Liu, Xiaoyang ; Liu, Jiuming ; Ruan, Hanzhi ; Zhi, Zhenghang ; Zhang, Yong ; Huang, Puyang ; Ji, Yuchen ; Tang, Chenjia ; Yang, Yumeng ; Che, Renchao ; Kou, Xufeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3732-b1a90c74f79c00a404ac7fee213454cdc4d708730cbf54e7dafc2493ac12b2283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Cadmium tellurides</topic><topic>Charge transport</topic><topic>Controllability</topic><topic>Electric fields</topic><topic>electric‐field control</topic><topic>Heterojunctions</topic><topic>Heterostructures</topic><topic>Hybrid systems</topic><topic>Indium antimonide</topic><topic>interfacial Rashba effect</topic><topic>Intermetallic compounds</topic><topic>Lattice matching</topic><topic>Magnetoresistance</topic><topic>Magnetoresistivity</topic><topic>Materials science</topic><topic>narrow‐bandgap semiconductor heterostructures</topic><topic>nonreciprocal transport</topic><topic>Quantum confinement</topic><topic>Room temperature</topic><topic>Spin-orbit interactions</topic><topic>spin–orbit coupling</topic><topic>System effectiveness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Lun</creatorcontrib><creatorcontrib>Wu, Yuyang</creatorcontrib><creatorcontrib>Liu, Xiaoyang</creatorcontrib><creatorcontrib>Liu, Jiuming</creatorcontrib><creatorcontrib>Ruan, Hanzhi</creatorcontrib><creatorcontrib>Zhi, Zhenghang</creatorcontrib><creatorcontrib>Zhang, Yong</creatorcontrib><creatorcontrib>Huang, Puyang</creatorcontrib><creatorcontrib>Ji, Yuchen</creatorcontrib><creatorcontrib>Tang, Chenjia</creatorcontrib><creatorcontrib>Yang, Yumeng</creatorcontrib><creatorcontrib>Che, Renchao</creatorcontrib><creatorcontrib>Kou, Xufeng</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Lun</au><au>Wu, Yuyang</au><au>Liu, Xiaoyang</au><au>Liu, Jiuming</au><au>Ruan, Hanzhi</au><au>Zhi, Zhenghang</au><au>Zhang, Yong</au><au>Huang, Puyang</au><au>Ji, Yuchen</au><au>Tang, Chenjia</au><au>Yang, Yumeng</au><au>Che, Renchao</au><au>Kou, Xufeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Room‐Temperature Gate‐Tunable Nonreciprocal Charge Transport in Lattice‐Matched InSb/CdTe Heterostructures</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2023-01-01</date><risdate>2023</risdate><volume>35</volume><issue>3</issue><spage>e2207322</spage><epage>n/a</epage><pages>e2207322-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Symmetry manipulation can be used to effectively tailor the physical order in solid‐state systems. With the breaking of both the inversion and time‐reversal symmetries, nonreciprocal magneto‐transport may arise in nonmagnetic systems to enrich spin–orbit effects. Here, the observation of unidirectional magnetoresistance (UMR) in lattice‐matched InSb/CdTe films is investigated up to room temperature. Benefiting from the strong built‐in electric field of 0.13 V nm−1 in the heterojunction region, the resulting Rashba‐type spin–orbit coupling and quantum confinement result in a distinct sinusoidal UMR signal with a nonreciprocal coefficient that is 1–2 orders of magnitude larger than most non‐centrosymmetric materials at 298 K. Moreover, this heterostructure configuration enables highly efficient gate tuning of the rectification response, wherein the UMR amplitude is enhanced by 40%. The results of this study advocate the use of narrow‐bandgap semiconductor‐based hybrid systems with robust spin textures as suitable platforms for the pursuit of controllable chiral spin–orbit applications.
Lattice‐matched InSb/CdTe heterostructures are utilized to tailor the nonreciprocal charge transport up to room temperature. Benefiting from both the inversion symmetry breaking and interfacial Rashba spin–orbit coupling, this nonmagnetic hybrid system not only warrants a pronounced unidirectional magnetoresistance effect, but also enables highly efficient gate tuning of the rectification response, hence offering feasible strategies for controllable spin–orbit applications.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>36526594</pmid><doi>10.1002/adma.202207322</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-8860-5105</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2023-01, Vol.35 (3), p.e2207322-n/a |
issn | 0935-9648 1521-4095 |
language | eng |
recordid | cdi_proquest_miscellaneous_2755575038 |
source | Wiley Journals |
subjects | Cadmium tellurides Charge transport Controllability Electric fields electric‐field control Heterojunctions Heterostructures Hybrid systems Indium antimonide interfacial Rashba effect Intermetallic compounds Lattice matching Magnetoresistance Magnetoresistivity Materials science narrow‐bandgap semiconductor heterostructures nonreciprocal transport Quantum confinement Room temperature Spin-orbit interactions spin–orbit coupling System effectiveness |
title | Room‐Temperature Gate‐Tunable Nonreciprocal Charge Transport in Lattice‐Matched InSb/CdTe Heterostructures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T04%3A01%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Room%E2%80%90Temperature%20Gate%E2%80%90Tunable%20Nonreciprocal%20Charge%20Transport%20in%20Lattice%E2%80%90Matched%20InSb/CdTe%20Heterostructures&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Li,%20Lun&rft.date=2023-01-01&rft.volume=35&rft.issue=3&rft.spage=e2207322&rft.epage=n/a&rft.pages=e2207322-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202207322&rft_dat=%3Cproquest_cross%3E2755575038%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2766927204&rft_id=info:pmid/36526594&rfr_iscdi=true |