Room‐Temperature Gate‐Tunable Nonreciprocal Charge Transport in Lattice‐Matched InSb/CdTe Heterostructures

Symmetry manipulation can be used to effectively tailor the physical order in solid‐state systems. With the breaking of both the inversion and time‐reversal symmetries, nonreciprocal magneto‐transport may arise in nonmagnetic systems to enrich spin–orbit effects. Here, the observation of unidirectio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2023-01, Vol.35 (3), p.e2207322-n/a
Hauptverfasser: Li, Lun, Wu, Yuyang, Liu, Xiaoyang, Liu, Jiuming, Ruan, Hanzhi, Zhi, Zhenghang, Zhang, Yong, Huang, Puyang, Ji, Yuchen, Tang, Chenjia, Yang, Yumeng, Che, Renchao, Kou, Xufeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 3
container_start_page e2207322
container_title Advanced materials (Weinheim)
container_volume 35
creator Li, Lun
Wu, Yuyang
Liu, Xiaoyang
Liu, Jiuming
Ruan, Hanzhi
Zhi, Zhenghang
Zhang, Yong
Huang, Puyang
Ji, Yuchen
Tang, Chenjia
Yang, Yumeng
Che, Renchao
Kou, Xufeng
description Symmetry manipulation can be used to effectively tailor the physical order in solid‐state systems. With the breaking of both the inversion and time‐reversal symmetries, nonreciprocal magneto‐transport may arise in nonmagnetic systems to enrich spin–orbit effects. Here, the observation of unidirectional magnetoresistance (UMR) in lattice‐matched InSb/CdTe films is investigated up to room temperature. Benefiting from the strong built‐in electric field of 0.13 V nm−1 in the heterojunction region, the resulting Rashba‐type spin–orbit coupling and quantum confinement result in a distinct sinusoidal UMR signal with a nonreciprocal coefficient that is 1–2 orders of magnitude larger than most non‐centrosymmetric materials at 298 K. Moreover, this heterostructure configuration enables highly efficient gate tuning of the rectification response, wherein the UMR amplitude is enhanced by 40%. The results of this study advocate the use of narrow‐bandgap semiconductor‐based hybrid systems with robust spin textures as suitable platforms for the pursuit of controllable chiral spin–orbit applications. Lattice‐matched InSb/CdTe heterostructures are utilized to tailor the nonreciprocal charge transport up to room temperature. Benefiting from both the inversion symmetry breaking and interfacial Rashba spin–orbit coupling, this nonmagnetic hybrid system not only warrants a pronounced unidirectional magnetoresistance effect, but also enables highly efficient gate tuning of the rectification response, hence offering feasible strategies for controllable spin–orbit applications.
doi_str_mv 10.1002/adma.202207322
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2755575038</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2755575038</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3732-b1a90c74f79c00a404ac7fee213454cdc4d708730cbf54e7dafc2493ac12b2283</originalsourceid><addsrcrecordid>eNqFkU1r20AQhpeS0Dhurz0WQS-5yB7th9Z7NE6aBJwEUvcsRqtRo6Cv7q4IufUn9Df2l0TC-YBechoYnnmYmZexLwksEgC-xKLBBQfOQQvOP7BZongSSzDqgM3ACBWbVK6O2LH39wBgUkg_siORKp4qI2esv-265t-fvztqenIYBkfROQaaWkOLeU3Rddc6slXvOot1tLlD94uincPW950LUdVGWwyhstPMFQZ7R0V02f7Il5tiR9EFBXKdD26wk9x_Yocl1p4-P9c5-_n9bLe5iLc355eb9Ta2YrwkzhM0YLUstbEAKEGi1SURT4RU0hZWFhpWWoDNSyVJF1haLo1Am_Cc85WYs5O9d9z790A-ZE3lLdU1ttQNPuNaKaUViAn99h963w2uHbcbqTQ1XHOQI7XYU3Y8xzsqs95VDbrHLIFsyiKbsshesxgHvj5rh7yh4hV_ef4ImD3wUNX0-I4uW59erd_kT_7mmSk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2766927204</pqid></control><display><type>article</type><title>Room‐Temperature Gate‐Tunable Nonreciprocal Charge Transport in Lattice‐Matched InSb/CdTe Heterostructures</title><source>Wiley Journals</source><creator>Li, Lun ; Wu, Yuyang ; Liu, Xiaoyang ; Liu, Jiuming ; Ruan, Hanzhi ; Zhi, Zhenghang ; Zhang, Yong ; Huang, Puyang ; Ji, Yuchen ; Tang, Chenjia ; Yang, Yumeng ; Che, Renchao ; Kou, Xufeng</creator><creatorcontrib>Li, Lun ; Wu, Yuyang ; Liu, Xiaoyang ; Liu, Jiuming ; Ruan, Hanzhi ; Zhi, Zhenghang ; Zhang, Yong ; Huang, Puyang ; Ji, Yuchen ; Tang, Chenjia ; Yang, Yumeng ; Che, Renchao ; Kou, Xufeng</creatorcontrib><description>Symmetry manipulation can be used to effectively tailor the physical order in solid‐state systems. With the breaking of both the inversion and time‐reversal symmetries, nonreciprocal magneto‐transport may arise in nonmagnetic systems to enrich spin–orbit effects. Here, the observation of unidirectional magnetoresistance (UMR) in lattice‐matched InSb/CdTe films is investigated up to room temperature. Benefiting from the strong built‐in electric field of 0.13 V nm−1 in the heterojunction region, the resulting Rashba‐type spin–orbit coupling and quantum confinement result in a distinct sinusoidal UMR signal with a nonreciprocal coefficient that is 1–2 orders of magnitude larger than most non‐centrosymmetric materials at 298 K. Moreover, this heterostructure configuration enables highly efficient gate tuning of the rectification response, wherein the UMR amplitude is enhanced by 40%. The results of this study advocate the use of narrow‐bandgap semiconductor‐based hybrid systems with robust spin textures as suitable platforms for the pursuit of controllable chiral spin–orbit applications. Lattice‐matched InSb/CdTe heterostructures are utilized to tailor the nonreciprocal charge transport up to room temperature. Benefiting from both the inversion symmetry breaking and interfacial Rashba spin–orbit coupling, this nonmagnetic hybrid system not only warrants a pronounced unidirectional magnetoresistance effect, but also enables highly efficient gate tuning of the rectification response, hence offering feasible strategies for controllable spin–orbit applications.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202207322</identifier><identifier>PMID: 36526594</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Cadmium tellurides ; Charge transport ; Controllability ; Electric fields ; electric‐field control ; Heterojunctions ; Heterostructures ; Hybrid systems ; Indium antimonide ; interfacial Rashba effect ; Intermetallic compounds ; Lattice matching ; Magnetoresistance ; Magnetoresistivity ; Materials science ; narrow‐bandgap semiconductor heterostructures ; nonreciprocal transport ; Quantum confinement ; Room temperature ; Spin-orbit interactions ; spin–orbit coupling ; System effectiveness</subject><ispartof>Advanced materials (Weinheim), 2023-01, Vol.35 (3), p.e2207322-n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><rights>2022 Wiley-VCH GmbH.</rights><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3732-b1a90c74f79c00a404ac7fee213454cdc4d708730cbf54e7dafc2493ac12b2283</citedby><cites>FETCH-LOGICAL-c3732-b1a90c74f79c00a404ac7fee213454cdc4d708730cbf54e7dafc2493ac12b2283</cites><orcidid>0000-0002-8860-5105</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202207322$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202207322$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36526594$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Lun</creatorcontrib><creatorcontrib>Wu, Yuyang</creatorcontrib><creatorcontrib>Liu, Xiaoyang</creatorcontrib><creatorcontrib>Liu, Jiuming</creatorcontrib><creatorcontrib>Ruan, Hanzhi</creatorcontrib><creatorcontrib>Zhi, Zhenghang</creatorcontrib><creatorcontrib>Zhang, Yong</creatorcontrib><creatorcontrib>Huang, Puyang</creatorcontrib><creatorcontrib>Ji, Yuchen</creatorcontrib><creatorcontrib>Tang, Chenjia</creatorcontrib><creatorcontrib>Yang, Yumeng</creatorcontrib><creatorcontrib>Che, Renchao</creatorcontrib><creatorcontrib>Kou, Xufeng</creatorcontrib><title>Room‐Temperature Gate‐Tunable Nonreciprocal Charge Transport in Lattice‐Matched InSb/CdTe Heterostructures</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Symmetry manipulation can be used to effectively tailor the physical order in solid‐state systems. With the breaking of both the inversion and time‐reversal symmetries, nonreciprocal magneto‐transport may arise in nonmagnetic systems to enrich spin–orbit effects. Here, the observation of unidirectional magnetoresistance (UMR) in lattice‐matched InSb/CdTe films is investigated up to room temperature. Benefiting from the strong built‐in electric field of 0.13 V nm−1 in the heterojunction region, the resulting Rashba‐type spin–orbit coupling and quantum confinement result in a distinct sinusoidal UMR signal with a nonreciprocal coefficient that is 1–2 orders of magnitude larger than most non‐centrosymmetric materials at 298 K. Moreover, this heterostructure configuration enables highly efficient gate tuning of the rectification response, wherein the UMR amplitude is enhanced by 40%. The results of this study advocate the use of narrow‐bandgap semiconductor‐based hybrid systems with robust spin textures as suitable platforms for the pursuit of controllable chiral spin–orbit applications. Lattice‐matched InSb/CdTe heterostructures are utilized to tailor the nonreciprocal charge transport up to room temperature. Benefiting from both the inversion symmetry breaking and interfacial Rashba spin–orbit coupling, this nonmagnetic hybrid system not only warrants a pronounced unidirectional magnetoresistance effect, but also enables highly efficient gate tuning of the rectification response, hence offering feasible strategies for controllable spin–orbit applications.</description><subject>Cadmium tellurides</subject><subject>Charge transport</subject><subject>Controllability</subject><subject>Electric fields</subject><subject>electric‐field control</subject><subject>Heterojunctions</subject><subject>Heterostructures</subject><subject>Hybrid systems</subject><subject>Indium antimonide</subject><subject>interfacial Rashba effect</subject><subject>Intermetallic compounds</subject><subject>Lattice matching</subject><subject>Magnetoresistance</subject><subject>Magnetoresistivity</subject><subject>Materials science</subject><subject>narrow‐bandgap semiconductor heterostructures</subject><subject>nonreciprocal transport</subject><subject>Quantum confinement</subject><subject>Room temperature</subject><subject>Spin-orbit interactions</subject><subject>spin–orbit coupling</subject><subject>System effectiveness</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkU1r20AQhpeS0Dhurz0WQS-5yB7th9Z7NE6aBJwEUvcsRqtRo6Cv7q4IufUn9Df2l0TC-YBechoYnnmYmZexLwksEgC-xKLBBQfOQQvOP7BZongSSzDqgM3ACBWbVK6O2LH39wBgUkg_siORKp4qI2esv-265t-fvztqenIYBkfROQaaWkOLeU3Rddc6slXvOot1tLlD94uincPW950LUdVGWwyhstPMFQZ7R0V02f7Il5tiR9EFBXKdD26wk9x_Yocl1p4-P9c5-_n9bLe5iLc355eb9Ta2YrwkzhM0YLUstbEAKEGi1SURT4RU0hZWFhpWWoDNSyVJF1haLo1Am_Cc85WYs5O9d9z790A-ZE3lLdU1ttQNPuNaKaUViAn99h963w2uHbcbqTQ1XHOQI7XYU3Y8xzsqs95VDbrHLIFsyiKbsshesxgHvj5rh7yh4hV_ef4ImD3wUNX0-I4uW59erd_kT_7mmSk</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Li, Lun</creator><creator>Wu, Yuyang</creator><creator>Liu, Xiaoyang</creator><creator>Liu, Jiuming</creator><creator>Ruan, Hanzhi</creator><creator>Zhi, Zhenghang</creator><creator>Zhang, Yong</creator><creator>Huang, Puyang</creator><creator>Ji, Yuchen</creator><creator>Tang, Chenjia</creator><creator>Yang, Yumeng</creator><creator>Che, Renchao</creator><creator>Kou, Xufeng</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8860-5105</orcidid></search><sort><creationdate>20230101</creationdate><title>Room‐Temperature Gate‐Tunable Nonreciprocal Charge Transport in Lattice‐Matched InSb/CdTe Heterostructures</title><author>Li, Lun ; Wu, Yuyang ; Liu, Xiaoyang ; Liu, Jiuming ; Ruan, Hanzhi ; Zhi, Zhenghang ; Zhang, Yong ; Huang, Puyang ; Ji, Yuchen ; Tang, Chenjia ; Yang, Yumeng ; Che, Renchao ; Kou, Xufeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3732-b1a90c74f79c00a404ac7fee213454cdc4d708730cbf54e7dafc2493ac12b2283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Cadmium tellurides</topic><topic>Charge transport</topic><topic>Controllability</topic><topic>Electric fields</topic><topic>electric‐field control</topic><topic>Heterojunctions</topic><topic>Heterostructures</topic><topic>Hybrid systems</topic><topic>Indium antimonide</topic><topic>interfacial Rashba effect</topic><topic>Intermetallic compounds</topic><topic>Lattice matching</topic><topic>Magnetoresistance</topic><topic>Magnetoresistivity</topic><topic>Materials science</topic><topic>narrow‐bandgap semiconductor heterostructures</topic><topic>nonreciprocal transport</topic><topic>Quantum confinement</topic><topic>Room temperature</topic><topic>Spin-orbit interactions</topic><topic>spin–orbit coupling</topic><topic>System effectiveness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Lun</creatorcontrib><creatorcontrib>Wu, Yuyang</creatorcontrib><creatorcontrib>Liu, Xiaoyang</creatorcontrib><creatorcontrib>Liu, Jiuming</creatorcontrib><creatorcontrib>Ruan, Hanzhi</creatorcontrib><creatorcontrib>Zhi, Zhenghang</creatorcontrib><creatorcontrib>Zhang, Yong</creatorcontrib><creatorcontrib>Huang, Puyang</creatorcontrib><creatorcontrib>Ji, Yuchen</creatorcontrib><creatorcontrib>Tang, Chenjia</creatorcontrib><creatorcontrib>Yang, Yumeng</creatorcontrib><creatorcontrib>Che, Renchao</creatorcontrib><creatorcontrib>Kou, Xufeng</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Lun</au><au>Wu, Yuyang</au><au>Liu, Xiaoyang</au><au>Liu, Jiuming</au><au>Ruan, Hanzhi</au><au>Zhi, Zhenghang</au><au>Zhang, Yong</au><au>Huang, Puyang</au><au>Ji, Yuchen</au><au>Tang, Chenjia</au><au>Yang, Yumeng</au><au>Che, Renchao</au><au>Kou, Xufeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Room‐Temperature Gate‐Tunable Nonreciprocal Charge Transport in Lattice‐Matched InSb/CdTe Heterostructures</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2023-01-01</date><risdate>2023</risdate><volume>35</volume><issue>3</issue><spage>e2207322</spage><epage>n/a</epage><pages>e2207322-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Symmetry manipulation can be used to effectively tailor the physical order in solid‐state systems. With the breaking of both the inversion and time‐reversal symmetries, nonreciprocal magneto‐transport may arise in nonmagnetic systems to enrich spin–orbit effects. Here, the observation of unidirectional magnetoresistance (UMR) in lattice‐matched InSb/CdTe films is investigated up to room temperature. Benefiting from the strong built‐in electric field of 0.13 V nm−1 in the heterojunction region, the resulting Rashba‐type spin–orbit coupling and quantum confinement result in a distinct sinusoidal UMR signal with a nonreciprocal coefficient that is 1–2 orders of magnitude larger than most non‐centrosymmetric materials at 298 K. Moreover, this heterostructure configuration enables highly efficient gate tuning of the rectification response, wherein the UMR amplitude is enhanced by 40%. The results of this study advocate the use of narrow‐bandgap semiconductor‐based hybrid systems with robust spin textures as suitable platforms for the pursuit of controllable chiral spin–orbit applications. Lattice‐matched InSb/CdTe heterostructures are utilized to tailor the nonreciprocal charge transport up to room temperature. Benefiting from both the inversion symmetry breaking and interfacial Rashba spin–orbit coupling, this nonmagnetic hybrid system not only warrants a pronounced unidirectional magnetoresistance effect, but also enables highly efficient gate tuning of the rectification response, hence offering feasible strategies for controllable spin–orbit applications.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>36526594</pmid><doi>10.1002/adma.202207322</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-8860-5105</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2023-01, Vol.35 (3), p.e2207322-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_miscellaneous_2755575038
source Wiley Journals
subjects Cadmium tellurides
Charge transport
Controllability
Electric fields
electric‐field control
Heterojunctions
Heterostructures
Hybrid systems
Indium antimonide
interfacial Rashba effect
Intermetallic compounds
Lattice matching
Magnetoresistance
Magnetoresistivity
Materials science
narrow‐bandgap semiconductor heterostructures
nonreciprocal transport
Quantum confinement
Room temperature
Spin-orbit interactions
spin–orbit coupling
System effectiveness
title Room‐Temperature Gate‐Tunable Nonreciprocal Charge Transport in Lattice‐Matched InSb/CdTe Heterostructures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T04%3A01%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Room%E2%80%90Temperature%20Gate%E2%80%90Tunable%20Nonreciprocal%20Charge%20Transport%20in%20Lattice%E2%80%90Matched%20InSb/CdTe%20Heterostructures&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Li,%20Lun&rft.date=2023-01-01&rft.volume=35&rft.issue=3&rft.spage=e2207322&rft.epage=n/a&rft.pages=e2207322-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202207322&rft_dat=%3Cproquest_cross%3E2755575038%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2766927204&rft_id=info:pmid/36526594&rfr_iscdi=true