Deep learning‐assisted diagnosis of parotid gland tumors by using contrast‐enhanced CT imaging
Objectives Imaging interpretation of the benignancy or malignancy of parotid gland tumors (PGTs) is a critical consideration prior to surgery in view of therapeutic and prognostic values of such discrimination. This study investigates the application of a deep learning‐based method for preoperative...
Gespeichert in:
Veröffentlicht in: | Oral diseases 2023-11, Vol.29 (8), p.3325-3336 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3336 |
---|---|
container_issue | 8 |
container_start_page | 3325 |
container_title | Oral diseases |
container_volume | 29 |
creator | Shen, Xue‐Meng Mao, Liang Yang, Zhi‐Yi Chai, Zi‐Kang Sun, Ting‐Guan Xu, Yongchao Sun, Zhi‐Jun |
description | Objectives
Imaging interpretation of the benignancy or malignancy of parotid gland tumors (PGTs) is a critical consideration prior to surgery in view of therapeutic and prognostic values of such discrimination. This study investigates the application of a deep learning‐based method for preoperative stratification of PGTs.
Materials and Methods
Using the 3D DenseNet‐121 architecture and a dataset consisting of 117 volumetric arterial‐phase contrast‐enhanced CT scans, we developed a binary classifier for PGT distinction and tested it. We compared the discriminative performance of the model on the test set to that of 12 junior and 12 senior head and neck clinicians. Besides, potential clinical utility of the model was evaluated by measuring changes in unassisted and model‐assisted performance of junior clinicians.
Results
The model finally reached the sensitivity, specificity, PPV, NPV, F1‐score of 0.955 (95% CI 0.751–0.998), 0.667 (95% CI 0.241–0.940), 0.913 (95% CI 0.705–0.985), 0.800 (95% CI 0.299–0.989) and 0.933, respectively, comparable to that of practicing clinicians. Furthermore, there were statistically significant increases in junior clinicians' specificity, PPV, NPV and F1‐score in differentiating benign from malignant PGTs when unassisted and model‐assisted performance of junior clinicians were compared.
Conclusion
Our results provide evidence that deep learning‐based method may offer assistance for PGT's binary distinction. |
doi_str_mv | 10.1111/odi.14474 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2754859843</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2898425962</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3534-13bf8d3c41824aa00d72c06dfbd8722aea283a3e00a7c2bae584d4cda11aa6913</originalsourceid><addsrcrecordid>eNp1kM1KAzEUhYMoVqsLX0ACbnQxNr8z6VLqLwjdVHAX7iSZOmU6qckM0p2P4DP6JEarLgSzSS75zuHcg9ARJec0nZG39TkVohBbaI_mhGZEMbmd3lyKTDL-OED7MS4IocWYs1004LlkREq2h8pL51a4cRDaup2_v75BjHXsnMW2hnnr04B9hVcQfFdbPG-gtbjrlz5EXK5xH5MKG992AWKX5K59gtYk-WSG6yXM0_cB2qmgie7w-x6ih-ur2eQ2u5_e3E0u7jPDJRcZ5WWlLDeCKiYACLEFMyS3VWlVwRg4YIoDd4RAYVgJTiphhbFAKUA-pnyITje-q-Cfexc7vayjcU2K7HwfNSukUHKsBE_oyR904fvQpnSaqUQwOc5Zos42lAk-xuAqvQppp7DWlOjP4nUqXn8Vn9jjb8e-XDr7S_40nYDRBnipG7f-30lPL-82lh-tN48X</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2898425962</pqid></control><display><type>article</type><title>Deep learning‐assisted diagnosis of parotid gland tumors by using contrast‐enhanced CT imaging</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Shen, Xue‐Meng ; Mao, Liang ; Yang, Zhi‐Yi ; Chai, Zi‐Kang ; Sun, Ting‐Guan ; Xu, Yongchao ; Sun, Zhi‐Jun</creator><creatorcontrib>Shen, Xue‐Meng ; Mao, Liang ; Yang, Zhi‐Yi ; Chai, Zi‐Kang ; Sun, Ting‐Guan ; Xu, Yongchao ; Sun, Zhi‐Jun</creatorcontrib><description>Objectives
Imaging interpretation of the benignancy or malignancy of parotid gland tumors (PGTs) is a critical consideration prior to surgery in view of therapeutic and prognostic values of such discrimination. This study investigates the application of a deep learning‐based method for preoperative stratification of PGTs.
Materials and Methods
Using the 3D DenseNet‐121 architecture and a dataset consisting of 117 volumetric arterial‐phase contrast‐enhanced CT scans, we developed a binary classifier for PGT distinction and tested it. We compared the discriminative performance of the model on the test set to that of 12 junior and 12 senior head and neck clinicians. Besides, potential clinical utility of the model was evaluated by measuring changes in unassisted and model‐assisted performance of junior clinicians.
Results
The model finally reached the sensitivity, specificity, PPV, NPV, F1‐score of 0.955 (95% CI 0.751–0.998), 0.667 (95% CI 0.241–0.940), 0.913 (95% CI 0.705–0.985), 0.800 (95% CI 0.299–0.989) and 0.933, respectively, comparable to that of practicing clinicians. Furthermore, there were statistically significant increases in junior clinicians' specificity, PPV, NPV and F1‐score in differentiating benign from malignant PGTs when unassisted and model‐assisted performance of junior clinicians were compared.
Conclusion
Our results provide evidence that deep learning‐based method may offer assistance for PGT's binary distinction.</description><identifier>ISSN: 1354-523X</identifier><identifier>EISSN: 1601-0825</identifier><identifier>DOI: 10.1111/odi.14474</identifier><identifier>PMID: 36520552</identifier><language>eng</language><publisher>Denmark: Wiley Subscription Services, Inc</publisher><subject>binary classification ; Computed tomography ; contrast‐enhanced computed tomography (CECT) ; convolutional neural network ; Deep learning ; Exocrine glands ; Malignancy ; Oral cancer ; Parotid gland ; parotid gland tumor ; Statistical analysis ; Tumors</subject><ispartof>Oral diseases, 2023-11, Vol.29 (8), p.3325-3336</ispartof><rights>2022 Wiley Periodicals LLC.</rights><rights>2023 Wiley Periodicals LLC</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3534-13bf8d3c41824aa00d72c06dfbd8722aea283a3e00a7c2bae584d4cda11aa6913</citedby><cites>FETCH-LOGICAL-c3534-13bf8d3c41824aa00d72c06dfbd8722aea283a3e00a7c2bae584d4cda11aa6913</cites><orcidid>0000-0003-0932-8013</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fodi.14474$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fodi.14474$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36520552$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shen, Xue‐Meng</creatorcontrib><creatorcontrib>Mao, Liang</creatorcontrib><creatorcontrib>Yang, Zhi‐Yi</creatorcontrib><creatorcontrib>Chai, Zi‐Kang</creatorcontrib><creatorcontrib>Sun, Ting‐Guan</creatorcontrib><creatorcontrib>Xu, Yongchao</creatorcontrib><creatorcontrib>Sun, Zhi‐Jun</creatorcontrib><title>Deep learning‐assisted diagnosis of parotid gland tumors by using contrast‐enhanced CT imaging</title><title>Oral diseases</title><addtitle>Oral Dis</addtitle><description>Objectives
Imaging interpretation of the benignancy or malignancy of parotid gland tumors (PGTs) is a critical consideration prior to surgery in view of therapeutic and prognostic values of such discrimination. This study investigates the application of a deep learning‐based method for preoperative stratification of PGTs.
Materials and Methods
Using the 3D DenseNet‐121 architecture and a dataset consisting of 117 volumetric arterial‐phase contrast‐enhanced CT scans, we developed a binary classifier for PGT distinction and tested it. We compared the discriminative performance of the model on the test set to that of 12 junior and 12 senior head and neck clinicians. Besides, potential clinical utility of the model was evaluated by measuring changes in unassisted and model‐assisted performance of junior clinicians.
Results
The model finally reached the sensitivity, specificity, PPV, NPV, F1‐score of 0.955 (95% CI 0.751–0.998), 0.667 (95% CI 0.241–0.940), 0.913 (95% CI 0.705–0.985), 0.800 (95% CI 0.299–0.989) and 0.933, respectively, comparable to that of practicing clinicians. Furthermore, there were statistically significant increases in junior clinicians' specificity, PPV, NPV and F1‐score in differentiating benign from malignant PGTs when unassisted and model‐assisted performance of junior clinicians were compared.
Conclusion
Our results provide evidence that deep learning‐based method may offer assistance for PGT's binary distinction.</description><subject>binary classification</subject><subject>Computed tomography</subject><subject>contrast‐enhanced computed tomography (CECT)</subject><subject>convolutional neural network</subject><subject>Deep learning</subject><subject>Exocrine glands</subject><subject>Malignancy</subject><subject>Oral cancer</subject><subject>Parotid gland</subject><subject>parotid gland tumor</subject><subject>Statistical analysis</subject><subject>Tumors</subject><issn>1354-523X</issn><issn>1601-0825</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kM1KAzEUhYMoVqsLX0ACbnQxNr8z6VLqLwjdVHAX7iSZOmU6qckM0p2P4DP6JEarLgSzSS75zuHcg9ARJec0nZG39TkVohBbaI_mhGZEMbmd3lyKTDL-OED7MS4IocWYs1004LlkREq2h8pL51a4cRDaup2_v75BjHXsnMW2hnnr04B9hVcQfFdbPG-gtbjrlz5EXK5xH5MKG992AWKX5K59gtYk-WSG6yXM0_cB2qmgie7w-x6ih-ur2eQ2u5_e3E0u7jPDJRcZ5WWlLDeCKiYACLEFMyS3VWlVwRg4YIoDd4RAYVgJTiphhbFAKUA-pnyITje-q-Cfexc7vayjcU2K7HwfNSukUHKsBE_oyR904fvQpnSaqUQwOc5Zos42lAk-xuAqvQppp7DWlOjP4nUqXn8Vn9jjb8e-XDr7S_40nYDRBnipG7f-30lPL-82lh-tN48X</recordid><startdate>202311</startdate><enddate>202311</enddate><creator>Shen, Xue‐Meng</creator><creator>Mao, Liang</creator><creator>Yang, Zhi‐Yi</creator><creator>Chai, Zi‐Kang</creator><creator>Sun, Ting‐Guan</creator><creator>Xu, Yongchao</creator><creator>Sun, Zhi‐Jun</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0932-8013</orcidid></search><sort><creationdate>202311</creationdate><title>Deep learning‐assisted diagnosis of parotid gland tumors by using contrast‐enhanced CT imaging</title><author>Shen, Xue‐Meng ; Mao, Liang ; Yang, Zhi‐Yi ; Chai, Zi‐Kang ; Sun, Ting‐Guan ; Xu, Yongchao ; Sun, Zhi‐Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3534-13bf8d3c41824aa00d72c06dfbd8722aea283a3e00a7c2bae584d4cda11aa6913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>binary classification</topic><topic>Computed tomography</topic><topic>contrast‐enhanced computed tomography (CECT)</topic><topic>convolutional neural network</topic><topic>Deep learning</topic><topic>Exocrine glands</topic><topic>Malignancy</topic><topic>Oral cancer</topic><topic>Parotid gland</topic><topic>parotid gland tumor</topic><topic>Statistical analysis</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shen, Xue‐Meng</creatorcontrib><creatorcontrib>Mao, Liang</creatorcontrib><creatorcontrib>Yang, Zhi‐Yi</creatorcontrib><creatorcontrib>Chai, Zi‐Kang</creatorcontrib><creatorcontrib>Sun, Ting‐Guan</creatorcontrib><creatorcontrib>Xu, Yongchao</creatorcontrib><creatorcontrib>Sun, Zhi‐Jun</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Oral diseases</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shen, Xue‐Meng</au><au>Mao, Liang</au><au>Yang, Zhi‐Yi</au><au>Chai, Zi‐Kang</au><au>Sun, Ting‐Guan</au><au>Xu, Yongchao</au><au>Sun, Zhi‐Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep learning‐assisted diagnosis of parotid gland tumors by using contrast‐enhanced CT imaging</atitle><jtitle>Oral diseases</jtitle><addtitle>Oral Dis</addtitle><date>2023-11</date><risdate>2023</risdate><volume>29</volume><issue>8</issue><spage>3325</spage><epage>3336</epage><pages>3325-3336</pages><issn>1354-523X</issn><eissn>1601-0825</eissn><abstract>Objectives
Imaging interpretation of the benignancy or malignancy of parotid gland tumors (PGTs) is a critical consideration prior to surgery in view of therapeutic and prognostic values of such discrimination. This study investigates the application of a deep learning‐based method for preoperative stratification of PGTs.
Materials and Methods
Using the 3D DenseNet‐121 architecture and a dataset consisting of 117 volumetric arterial‐phase contrast‐enhanced CT scans, we developed a binary classifier for PGT distinction and tested it. We compared the discriminative performance of the model on the test set to that of 12 junior and 12 senior head and neck clinicians. Besides, potential clinical utility of the model was evaluated by measuring changes in unassisted and model‐assisted performance of junior clinicians.
Results
The model finally reached the sensitivity, specificity, PPV, NPV, F1‐score of 0.955 (95% CI 0.751–0.998), 0.667 (95% CI 0.241–0.940), 0.913 (95% CI 0.705–0.985), 0.800 (95% CI 0.299–0.989) and 0.933, respectively, comparable to that of practicing clinicians. Furthermore, there were statistically significant increases in junior clinicians' specificity, PPV, NPV and F1‐score in differentiating benign from malignant PGTs when unassisted and model‐assisted performance of junior clinicians were compared.
Conclusion
Our results provide evidence that deep learning‐based method may offer assistance for PGT's binary distinction.</abstract><cop>Denmark</cop><pub>Wiley Subscription Services, Inc</pub><pmid>36520552</pmid><doi>10.1111/odi.14474</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-0932-8013</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1354-523X |
ispartof | Oral diseases, 2023-11, Vol.29 (8), p.3325-3336 |
issn | 1354-523X 1601-0825 |
language | eng |
recordid | cdi_proquest_miscellaneous_2754859843 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | binary classification Computed tomography contrast‐enhanced computed tomography (CECT) convolutional neural network Deep learning Exocrine glands Malignancy Oral cancer Parotid gland parotid gland tumor Statistical analysis Tumors |
title | Deep learning‐assisted diagnosis of parotid gland tumors by using contrast‐enhanced CT imaging |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T03%3A08%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20learning%E2%80%90assisted%20diagnosis%20of%20parotid%20gland%20tumors%20by%20using%20contrast%E2%80%90enhanced%20CT%20imaging&rft.jtitle=Oral%20diseases&rft.au=Shen,%20Xue%E2%80%90Meng&rft.date=2023-11&rft.volume=29&rft.issue=8&rft.spage=3325&rft.epage=3336&rft.pages=3325-3336&rft.issn=1354-523X&rft.eissn=1601-0825&rft_id=info:doi/10.1111/odi.14474&rft_dat=%3Cproquest_cross%3E2898425962%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2898425962&rft_id=info:pmid/36520552&rfr_iscdi=true |