Deep learning‐assisted diagnosis of parotid gland tumors by using contrast‐enhanced CT imaging

Objectives Imaging interpretation of the benignancy or malignancy of parotid gland tumors (PGTs) is a critical consideration prior to surgery in view of therapeutic and prognostic values of such discrimination. This study investigates the application of a deep learning‐based method for preoperative...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Oral diseases 2023-11, Vol.29 (8), p.3325-3336
Hauptverfasser: Shen, Xue‐Meng, Mao, Liang, Yang, Zhi‐Yi, Chai, Zi‐Kang, Sun, Ting‐Guan, Xu, Yongchao, Sun, Zhi‐Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3336
container_issue 8
container_start_page 3325
container_title Oral diseases
container_volume 29
creator Shen, Xue‐Meng
Mao, Liang
Yang, Zhi‐Yi
Chai, Zi‐Kang
Sun, Ting‐Guan
Xu, Yongchao
Sun, Zhi‐Jun
description Objectives Imaging interpretation of the benignancy or malignancy of parotid gland tumors (PGTs) is a critical consideration prior to surgery in view of therapeutic and prognostic values of such discrimination. This study investigates the application of a deep learning‐based method for preoperative stratification of PGTs. Materials and Methods Using the 3D DenseNet‐121 architecture and a dataset consisting of 117 volumetric arterial‐phase contrast‐enhanced CT scans, we developed a binary classifier for PGT distinction and tested it. We compared the discriminative performance of the model on the test set to that of 12 junior and 12 senior head and neck clinicians. Besides, potential clinical utility of the model was evaluated by measuring changes in unassisted and model‐assisted performance of junior clinicians. Results The model finally reached the sensitivity, specificity, PPV, NPV, F1‐score of 0.955 (95% CI 0.751–0.998), 0.667 (95% CI 0.241–0.940), 0.913 (95% CI 0.705–0.985), 0.800 (95% CI 0.299–0.989) and 0.933, respectively, comparable to that of practicing clinicians. Furthermore, there were statistically significant increases in junior clinicians' specificity, PPV, NPV and F1‐score in differentiating benign from malignant PGTs when unassisted and model‐assisted performance of junior clinicians were compared. Conclusion Our results provide evidence that deep learning‐based method may offer assistance for PGT's binary distinction.
doi_str_mv 10.1111/odi.14474
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2754859843</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2754859843</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3534-13bf8d3c41824aa00d72c06dfbd8722aea283a3e00a7c2bae584d4cda11aa6913</originalsourceid><addsrcrecordid>eNp1kM1KAzEUhYMoVqsLX0ACbnQxNr8z6VLqLwjdVHAX7iSZOmU6qckM0p2P4DP6JEarLgSzSS75zuHcg9ARJec0nZG39TkVohBbaI_mhGZEMbmd3lyKTDL-OED7MS4IocWYs1004LlkREq2h8pL51a4cRDaup2_v75BjHXsnMW2hnnr04B9hVcQfFdbPG-gtbjrlz5EXK5xH5MKG992AWKX5K59gtYk-WSG6yXM0_cB2qmgie7w-x6ih-ur2eQ2u5_e3E0u7jPDJRcZ5WWlLDeCKiYACLEFMyS3VWlVwRg4YIoDd4RAYVgJTiphhbFAKUA-pnyITje-q-Cfexc7vayjcU2K7HwfNSukUHKsBE_oyR904fvQpnSaqUQwOc5Zos42lAk-xuAqvQppp7DWlOjP4nUqXn8Vn9jjb8e-XDr7S_40nYDRBnipG7f-30lPL-82lh-tN48X</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2898425962</pqid></control><display><type>article</type><title>Deep learning‐assisted diagnosis of parotid gland tumors by using contrast‐enhanced CT imaging</title><source>Access via Wiley Online Library</source><creator>Shen, Xue‐Meng ; Mao, Liang ; Yang, Zhi‐Yi ; Chai, Zi‐Kang ; Sun, Ting‐Guan ; Xu, Yongchao ; Sun, Zhi‐Jun</creator><creatorcontrib>Shen, Xue‐Meng ; Mao, Liang ; Yang, Zhi‐Yi ; Chai, Zi‐Kang ; Sun, Ting‐Guan ; Xu, Yongchao ; Sun, Zhi‐Jun</creatorcontrib><description>Objectives Imaging interpretation of the benignancy or malignancy of parotid gland tumors (PGTs) is a critical consideration prior to surgery in view of therapeutic and prognostic values of such discrimination. This study investigates the application of a deep learning‐based method for preoperative stratification of PGTs. Materials and Methods Using the 3D DenseNet‐121 architecture and a dataset consisting of 117 volumetric arterial‐phase contrast‐enhanced CT scans, we developed a binary classifier for PGT distinction and tested it. We compared the discriminative performance of the model on the test set to that of 12 junior and 12 senior head and neck clinicians. Besides, potential clinical utility of the model was evaluated by measuring changes in unassisted and model‐assisted performance of junior clinicians. Results The model finally reached the sensitivity, specificity, PPV, NPV, F1‐score of 0.955 (95% CI 0.751–0.998), 0.667 (95% CI 0.241–0.940), 0.913 (95% CI 0.705–0.985), 0.800 (95% CI 0.299–0.989) and 0.933, respectively, comparable to that of practicing clinicians. Furthermore, there were statistically significant increases in junior clinicians' specificity, PPV, NPV and F1‐score in differentiating benign from malignant PGTs when unassisted and model‐assisted performance of junior clinicians were compared. Conclusion Our results provide evidence that deep learning‐based method may offer assistance for PGT's binary distinction.</description><identifier>ISSN: 1354-523X</identifier><identifier>EISSN: 1601-0825</identifier><identifier>DOI: 10.1111/odi.14474</identifier><identifier>PMID: 36520552</identifier><language>eng</language><publisher>Denmark: Wiley Subscription Services, Inc</publisher><subject>binary classification ; Computed tomography ; contrast‐enhanced computed tomography (CECT) ; convolutional neural network ; Deep learning ; Exocrine glands ; Malignancy ; Oral cancer ; Parotid gland ; parotid gland tumor ; Statistical analysis ; Tumors</subject><ispartof>Oral diseases, 2023-11, Vol.29 (8), p.3325-3336</ispartof><rights>2022 Wiley Periodicals LLC.</rights><rights>2023 Wiley Periodicals LLC</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3534-13bf8d3c41824aa00d72c06dfbd8722aea283a3e00a7c2bae584d4cda11aa6913</citedby><cites>FETCH-LOGICAL-c3534-13bf8d3c41824aa00d72c06dfbd8722aea283a3e00a7c2bae584d4cda11aa6913</cites><orcidid>0000-0003-0932-8013</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fodi.14474$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fodi.14474$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36520552$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shen, Xue‐Meng</creatorcontrib><creatorcontrib>Mao, Liang</creatorcontrib><creatorcontrib>Yang, Zhi‐Yi</creatorcontrib><creatorcontrib>Chai, Zi‐Kang</creatorcontrib><creatorcontrib>Sun, Ting‐Guan</creatorcontrib><creatorcontrib>Xu, Yongchao</creatorcontrib><creatorcontrib>Sun, Zhi‐Jun</creatorcontrib><title>Deep learning‐assisted diagnosis of parotid gland tumors by using contrast‐enhanced CT imaging</title><title>Oral diseases</title><addtitle>Oral Dis</addtitle><description>Objectives Imaging interpretation of the benignancy or malignancy of parotid gland tumors (PGTs) is a critical consideration prior to surgery in view of therapeutic and prognostic values of such discrimination. This study investigates the application of a deep learning‐based method for preoperative stratification of PGTs. Materials and Methods Using the 3D DenseNet‐121 architecture and a dataset consisting of 117 volumetric arterial‐phase contrast‐enhanced CT scans, we developed a binary classifier for PGT distinction and tested it. We compared the discriminative performance of the model on the test set to that of 12 junior and 12 senior head and neck clinicians. Besides, potential clinical utility of the model was evaluated by measuring changes in unassisted and model‐assisted performance of junior clinicians. Results The model finally reached the sensitivity, specificity, PPV, NPV, F1‐score of 0.955 (95% CI 0.751–0.998), 0.667 (95% CI 0.241–0.940), 0.913 (95% CI 0.705–0.985), 0.800 (95% CI 0.299–0.989) and 0.933, respectively, comparable to that of practicing clinicians. Furthermore, there were statistically significant increases in junior clinicians' specificity, PPV, NPV and F1‐score in differentiating benign from malignant PGTs when unassisted and model‐assisted performance of junior clinicians were compared. Conclusion Our results provide evidence that deep learning‐based method may offer assistance for PGT's binary distinction.</description><subject>binary classification</subject><subject>Computed tomography</subject><subject>contrast‐enhanced computed tomography (CECT)</subject><subject>convolutional neural network</subject><subject>Deep learning</subject><subject>Exocrine glands</subject><subject>Malignancy</subject><subject>Oral cancer</subject><subject>Parotid gland</subject><subject>parotid gland tumor</subject><subject>Statistical analysis</subject><subject>Tumors</subject><issn>1354-523X</issn><issn>1601-0825</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kM1KAzEUhYMoVqsLX0ACbnQxNr8z6VLqLwjdVHAX7iSZOmU6qckM0p2P4DP6JEarLgSzSS75zuHcg9ARJec0nZG39TkVohBbaI_mhGZEMbmd3lyKTDL-OED7MS4IocWYs1004LlkREq2h8pL51a4cRDaup2_v75BjHXsnMW2hnnr04B9hVcQfFdbPG-gtbjrlz5EXK5xH5MKG992AWKX5K59gtYk-WSG6yXM0_cB2qmgie7w-x6ih-ur2eQ2u5_e3E0u7jPDJRcZ5WWlLDeCKiYACLEFMyS3VWlVwRg4YIoDd4RAYVgJTiphhbFAKUA-pnyITje-q-Cfexc7vayjcU2K7HwfNSukUHKsBE_oyR904fvQpnSaqUQwOc5Zos42lAk-xuAqvQppp7DWlOjP4nUqXn8Vn9jjb8e-XDr7S_40nYDRBnipG7f-30lPL-82lh-tN48X</recordid><startdate>202311</startdate><enddate>202311</enddate><creator>Shen, Xue‐Meng</creator><creator>Mao, Liang</creator><creator>Yang, Zhi‐Yi</creator><creator>Chai, Zi‐Kang</creator><creator>Sun, Ting‐Guan</creator><creator>Xu, Yongchao</creator><creator>Sun, Zhi‐Jun</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0932-8013</orcidid></search><sort><creationdate>202311</creationdate><title>Deep learning‐assisted diagnosis of parotid gland tumors by using contrast‐enhanced CT imaging</title><author>Shen, Xue‐Meng ; Mao, Liang ; Yang, Zhi‐Yi ; Chai, Zi‐Kang ; Sun, Ting‐Guan ; Xu, Yongchao ; Sun, Zhi‐Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3534-13bf8d3c41824aa00d72c06dfbd8722aea283a3e00a7c2bae584d4cda11aa6913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>binary classification</topic><topic>Computed tomography</topic><topic>contrast‐enhanced computed tomography (CECT)</topic><topic>convolutional neural network</topic><topic>Deep learning</topic><topic>Exocrine glands</topic><topic>Malignancy</topic><topic>Oral cancer</topic><topic>Parotid gland</topic><topic>parotid gland tumor</topic><topic>Statistical analysis</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shen, Xue‐Meng</creatorcontrib><creatorcontrib>Mao, Liang</creatorcontrib><creatorcontrib>Yang, Zhi‐Yi</creatorcontrib><creatorcontrib>Chai, Zi‐Kang</creatorcontrib><creatorcontrib>Sun, Ting‐Guan</creatorcontrib><creatorcontrib>Xu, Yongchao</creatorcontrib><creatorcontrib>Sun, Zhi‐Jun</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Oral diseases</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shen, Xue‐Meng</au><au>Mao, Liang</au><au>Yang, Zhi‐Yi</au><au>Chai, Zi‐Kang</au><au>Sun, Ting‐Guan</au><au>Xu, Yongchao</au><au>Sun, Zhi‐Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep learning‐assisted diagnosis of parotid gland tumors by using contrast‐enhanced CT imaging</atitle><jtitle>Oral diseases</jtitle><addtitle>Oral Dis</addtitle><date>2023-11</date><risdate>2023</risdate><volume>29</volume><issue>8</issue><spage>3325</spage><epage>3336</epage><pages>3325-3336</pages><issn>1354-523X</issn><eissn>1601-0825</eissn><abstract>Objectives Imaging interpretation of the benignancy or malignancy of parotid gland tumors (PGTs) is a critical consideration prior to surgery in view of therapeutic and prognostic values of such discrimination. This study investigates the application of a deep learning‐based method for preoperative stratification of PGTs. Materials and Methods Using the 3D DenseNet‐121 architecture and a dataset consisting of 117 volumetric arterial‐phase contrast‐enhanced CT scans, we developed a binary classifier for PGT distinction and tested it. We compared the discriminative performance of the model on the test set to that of 12 junior and 12 senior head and neck clinicians. Besides, potential clinical utility of the model was evaluated by measuring changes in unassisted and model‐assisted performance of junior clinicians. Results The model finally reached the sensitivity, specificity, PPV, NPV, F1‐score of 0.955 (95% CI 0.751–0.998), 0.667 (95% CI 0.241–0.940), 0.913 (95% CI 0.705–0.985), 0.800 (95% CI 0.299–0.989) and 0.933, respectively, comparable to that of practicing clinicians. Furthermore, there were statistically significant increases in junior clinicians' specificity, PPV, NPV and F1‐score in differentiating benign from malignant PGTs when unassisted and model‐assisted performance of junior clinicians were compared. Conclusion Our results provide evidence that deep learning‐based method may offer assistance for PGT's binary distinction.</abstract><cop>Denmark</cop><pub>Wiley Subscription Services, Inc</pub><pmid>36520552</pmid><doi>10.1111/odi.14474</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-0932-8013</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1354-523X
ispartof Oral diseases, 2023-11, Vol.29 (8), p.3325-3336
issn 1354-523X
1601-0825
language eng
recordid cdi_proquest_miscellaneous_2754859843
source Access via Wiley Online Library
subjects binary classification
Computed tomography
contrast‐enhanced computed tomography (CECT)
convolutional neural network
Deep learning
Exocrine glands
Malignancy
Oral cancer
Parotid gland
parotid gland tumor
Statistical analysis
Tumors
title Deep learning‐assisted diagnosis of parotid gland tumors by using contrast‐enhanced CT imaging
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T08%3A58%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20learning%E2%80%90assisted%20diagnosis%20of%20parotid%20gland%20tumors%20by%20using%20contrast%E2%80%90enhanced%20CT%20imaging&rft.jtitle=Oral%20diseases&rft.au=Shen,%20Xue%E2%80%90Meng&rft.date=2023-11&rft.volume=29&rft.issue=8&rft.spage=3325&rft.epage=3336&rft.pages=3325-3336&rft.issn=1354-523X&rft.eissn=1601-0825&rft_id=info:doi/10.1111/odi.14474&rft_dat=%3Cproquest_cross%3E2754859843%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2898425962&rft_id=info:pmid/36520552&rfr_iscdi=true