Autonomous rhythmic activity in glioma networks drives brain tumour growth

Diffuse gliomas, particularly glioblastomas, are incurable brain tumours 1 . They are characterized by networks of interconnected brain tumour cells that communicate via Ca 2+ transients 2 – 6 . However, the networks’ architecture and communication strategy and how these influence tumour biology rem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 2023-01, Vol.613 (7942), p.179-186
Hauptverfasser: Hausmann, David, Hoffmann, Dirk C., Venkataramani, Varun, Jung, Erik, Horschitz, Sandra, Tetzlaff, Svenja K., Jabali, Ammar, Hai, Ling, Kessler, Tobias, Azoŕin, Daniel D., Weil, Sophie, Kourtesakis, Alexandros, Sievers, Philipp, Habel, Antje, Breckwoldt, Michael O., Karreman, Matthia A., Ratliff, Miriam, Messmer, Julia M., Yang, Yvonne, Reyhan, Ekin, Wendler, Susann, Löb, Cathrin, Mayer, Chanté, Figarella, Katherine, Osswald, Matthias, Solecki, Gergely, Sahm, Felix, Garaschuk, Olga, Kuner, Thomas, Koch, Philipp, Schlesner, Matthias, Wick, Wolfgang, Winkler, Frank
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 186
container_issue 7942
container_start_page 179
container_title Nature (London)
container_volume 613
creator Hausmann, David
Hoffmann, Dirk C.
Venkataramani, Varun
Jung, Erik
Horschitz, Sandra
Tetzlaff, Svenja K.
Jabali, Ammar
Hai, Ling
Kessler, Tobias
Azoŕin, Daniel D.
Weil, Sophie
Kourtesakis, Alexandros
Sievers, Philipp
Habel, Antje
Breckwoldt, Michael O.
Karreman, Matthia A.
Ratliff, Miriam
Messmer, Julia M.
Yang, Yvonne
Reyhan, Ekin
Wendler, Susann
Löb, Cathrin
Mayer, Chanté
Figarella, Katherine
Osswald, Matthias
Solecki, Gergely
Sahm, Felix
Garaschuk, Olga
Kuner, Thomas
Koch, Philipp
Schlesner, Matthias
Wick, Wolfgang
Winkler, Frank
description Diffuse gliomas, particularly glioblastomas, are incurable brain tumours 1 . They are characterized by networks of interconnected brain tumour cells that communicate via Ca 2+ transients 2 – 6 . However, the networks’ architecture and communication strategy and how these influence tumour biology remain unknown. Here we describe how glioblastoma cell networks include a small, plastic population of highly active glioblastoma cells that display rhythmic Ca 2+ oscillations and are particularly connected to others. Their autonomous periodic Ca 2+ transients preceded Ca 2+ transients of other network-connected cells, activating the frequency-dependent MAPK and NF-κB pathways. Mathematical network analysis revealed that glioblastoma network topology follows scale-free and small-world properties, with periodic tumour cells frequently located in network hubs. This network design enabled resistance against random damage but was vulnerable to losing its key hubs. Targeting of autonomous rhythmic activity by selective physical ablation of periodic tumour cells or by genetic or pharmacological interference with the potassium channel KCa3.1 (also known as IK1, SK4 or KCNN4) strongly compromised global network communication. This led to a marked reduction of tumour cell viability within the entire network, reduced tumour growth in mice and extended animal survival. The dependency of glioblastoma networks on periodic Ca 2+ activity generates a vulnerability 7 that can be exploited for the development of novel therapies, such as with KCa3.1-inhibiting drugs. A population of highly interconnected cells in glioblastoma makes these tumours resistant to general damage but vulnerable to targeted disruption of this small fraction of cells and their rhythmic Ca 2+ oscillations.
doi_str_mv 10.1038/s41586-022-05520-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2754858768</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2754858768</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-386d1e16f2a193c2747ae21c898d23f2a5907357d69e9d9a02c20d4630797fec3</originalsourceid><addsrcrecordid>eNp9kLtOAzEQRS0EgvD4AQq0Eg3Nwvhtl1HEU5FooLYcr5MsZHeD7Q3K32NIAImCyiPPuXdmLkKnGC4xUHUVGeZKlEBICZwTKNkOGmAmRcmEkrtoAEBUCYqKA3QY4wsAcCzZPjqgIhdcswF6GPapa7um62MR5us0b2pXWJfqVZ3WRd0Ws0XdNbZofXrvwmssqlCvfCwmweZm6rMwFLPQvaf5Mdqb2kX0J9v3CD3fXD-N7srx4-39aDguHZU8lVSJCnsspsRiTR2RTFpPsFNaVYTmX65BUi4rob2utAXiCFRMUJBaTr2jR-hi47sM3VvvYzJNHZ1fLGzr8xmGSM4UV1KojJ7_QV_yvm3eLlOCAAWieabIhnKhizH4qVmGurFhbTCYz6TNJmmTkzZfSRuWRWdb637S-OpH8h1tBugGiLnVznz4nf2P7QcsN4h_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2762030295</pqid></control><display><type>article</type><title>Autonomous rhythmic activity in glioma networks drives brain tumour growth</title><source>MEDLINE</source><source>Nature</source><source>Springer Online Journals - JUSTICE</source><creator>Hausmann, David ; Hoffmann, Dirk C. ; Venkataramani, Varun ; Jung, Erik ; Horschitz, Sandra ; Tetzlaff, Svenja K. ; Jabali, Ammar ; Hai, Ling ; Kessler, Tobias ; Azoŕin, Daniel D. ; Weil, Sophie ; Kourtesakis, Alexandros ; Sievers, Philipp ; Habel, Antje ; Breckwoldt, Michael O. ; Karreman, Matthia A. ; Ratliff, Miriam ; Messmer, Julia M. ; Yang, Yvonne ; Reyhan, Ekin ; Wendler, Susann ; Löb, Cathrin ; Mayer, Chanté ; Figarella, Katherine ; Osswald, Matthias ; Solecki, Gergely ; Sahm, Felix ; Garaschuk, Olga ; Kuner, Thomas ; Koch, Philipp ; Schlesner, Matthias ; Wick, Wolfgang ; Winkler, Frank</creator><creatorcontrib>Hausmann, David ; Hoffmann, Dirk C. ; Venkataramani, Varun ; Jung, Erik ; Horschitz, Sandra ; Tetzlaff, Svenja K. ; Jabali, Ammar ; Hai, Ling ; Kessler, Tobias ; Azoŕin, Daniel D. ; Weil, Sophie ; Kourtesakis, Alexandros ; Sievers, Philipp ; Habel, Antje ; Breckwoldt, Michael O. ; Karreman, Matthia A. ; Ratliff, Miriam ; Messmer, Julia M. ; Yang, Yvonne ; Reyhan, Ekin ; Wendler, Susann ; Löb, Cathrin ; Mayer, Chanté ; Figarella, Katherine ; Osswald, Matthias ; Solecki, Gergely ; Sahm, Felix ; Garaschuk, Olga ; Kuner, Thomas ; Koch, Philipp ; Schlesner, Matthias ; Wick, Wolfgang ; Winkler, Frank</creatorcontrib><description>Diffuse gliomas, particularly glioblastomas, are incurable brain tumours 1 . They are characterized by networks of interconnected brain tumour cells that communicate via Ca 2+ transients 2 – 6 . However, the networks’ architecture and communication strategy and how these influence tumour biology remain unknown. Here we describe how glioblastoma cell networks include a small, plastic population of highly active glioblastoma cells that display rhythmic Ca 2+ oscillations and are particularly connected to others. Their autonomous periodic Ca 2+ transients preceded Ca 2+ transients of other network-connected cells, activating the frequency-dependent MAPK and NF-κB pathways. Mathematical network analysis revealed that glioblastoma network topology follows scale-free and small-world properties, with periodic tumour cells frequently located in network hubs. This network design enabled resistance against random damage but was vulnerable to losing its key hubs. Targeting of autonomous rhythmic activity by selective physical ablation of periodic tumour cells or by genetic or pharmacological interference with the potassium channel KCa3.1 (also known as IK1, SK4 or KCNN4) strongly compromised global network communication. This led to a marked reduction of tumour cell viability within the entire network, reduced tumour growth in mice and extended animal survival. The dependency of glioblastoma networks on periodic Ca 2+ activity generates a vulnerability 7 that can be exploited for the development of novel therapies, such as with KCa3.1-inhibiting drugs. A population of highly interconnected cells in glioblastoma makes these tumours resistant to general damage but vulnerable to targeted disruption of this small fraction of cells and their rhythmic Ca 2+ oscillations.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-022-05520-4</identifier><identifier>PMID: 36517594</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/100 ; 14/1 ; 14/10 ; 14/19 ; 14/63 ; 14/69 ; 38/89 ; 42 ; 42/35 ; 42/41 ; 59/57 ; 631/67/1922 ; 64/60 ; 692/617/375/1922 ; 82/80 ; Ablation ; Animals ; Brain ; Brain - metabolism ; Brain - pathology ; Brain cancer ; Brain Neoplasms - genetics ; Brain Neoplasms - metabolism ; Brain Neoplasms - pathology ; Brain tumors ; Calcium - metabolism ; Calcium ions ; Calcium Signaling ; Calcium signalling ; Cell Death ; Cell interactions ; Cell viability ; Communication ; Drug development ; Frequency dependence ; Glioblastoma ; Glioblastoma - genetics ; Glioblastoma - metabolism ; Glioblastoma - pathology ; Glioblastoma cells ; Glioma ; Hubs ; Humanities and Social Sciences ; Lasers ; MAP kinase ; MAP Kinase Signaling System ; Mice ; multidisciplinary ; Network analysis ; Network design ; Network hubs ; Network topologies ; NF-kappa B - metabolism ; NF-κB protein ; Oscillations ; Potassium ; Potassium channels (calcium-gated) ; Rhythms ; Science ; Science (multidisciplinary) ; Survival Analysis ; Topology ; Tumors</subject><ispartof>Nature (London), 2023-01, Vol.613 (7942), p.179-186</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2022. The Author(s), under exclusive licence to Springer Nature Limited.</rights><rights>Copyright Nature Publishing Group Jan 5, 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-386d1e16f2a193c2747ae21c898d23f2a5907357d69e9d9a02c20d4630797fec3</citedby><cites>FETCH-LOGICAL-c375t-386d1e16f2a193c2747ae21c898d23f2a5907357d69e9d9a02c20d4630797fec3</cites><orcidid>0000-0003-3472-4165 ; 0000-0002-0571-4710 ; 0000-0001-8350-7074 ; 0000-0003-1370-1933 ; 0000-0002-6171-634X ; 0000-0001-5441-1962 ; 0000-0003-3237-6021 ; 0000-0002-9464-6544 ; 0000-0003-4892-6104 ; 0000-0002-2109-0186 ; 0000-0003-3305-9167 ; 0000-0003-3713-8786 ; 0000-0002-9980-2390 ; 0000-0001-7858-1501 ; 0000-0002-5896-4086 ; 0000-0002-2927-0886</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41586-022-05520-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41586-022-05520-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36517594$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hausmann, David</creatorcontrib><creatorcontrib>Hoffmann, Dirk C.</creatorcontrib><creatorcontrib>Venkataramani, Varun</creatorcontrib><creatorcontrib>Jung, Erik</creatorcontrib><creatorcontrib>Horschitz, Sandra</creatorcontrib><creatorcontrib>Tetzlaff, Svenja K.</creatorcontrib><creatorcontrib>Jabali, Ammar</creatorcontrib><creatorcontrib>Hai, Ling</creatorcontrib><creatorcontrib>Kessler, Tobias</creatorcontrib><creatorcontrib>Azoŕin, Daniel D.</creatorcontrib><creatorcontrib>Weil, Sophie</creatorcontrib><creatorcontrib>Kourtesakis, Alexandros</creatorcontrib><creatorcontrib>Sievers, Philipp</creatorcontrib><creatorcontrib>Habel, Antje</creatorcontrib><creatorcontrib>Breckwoldt, Michael O.</creatorcontrib><creatorcontrib>Karreman, Matthia A.</creatorcontrib><creatorcontrib>Ratliff, Miriam</creatorcontrib><creatorcontrib>Messmer, Julia M.</creatorcontrib><creatorcontrib>Yang, Yvonne</creatorcontrib><creatorcontrib>Reyhan, Ekin</creatorcontrib><creatorcontrib>Wendler, Susann</creatorcontrib><creatorcontrib>Löb, Cathrin</creatorcontrib><creatorcontrib>Mayer, Chanté</creatorcontrib><creatorcontrib>Figarella, Katherine</creatorcontrib><creatorcontrib>Osswald, Matthias</creatorcontrib><creatorcontrib>Solecki, Gergely</creatorcontrib><creatorcontrib>Sahm, Felix</creatorcontrib><creatorcontrib>Garaschuk, Olga</creatorcontrib><creatorcontrib>Kuner, Thomas</creatorcontrib><creatorcontrib>Koch, Philipp</creatorcontrib><creatorcontrib>Schlesner, Matthias</creatorcontrib><creatorcontrib>Wick, Wolfgang</creatorcontrib><creatorcontrib>Winkler, Frank</creatorcontrib><title>Autonomous rhythmic activity in glioma networks drives brain tumour growth</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Diffuse gliomas, particularly glioblastomas, are incurable brain tumours 1 . They are characterized by networks of interconnected brain tumour cells that communicate via Ca 2+ transients 2 – 6 . However, the networks’ architecture and communication strategy and how these influence tumour biology remain unknown. Here we describe how glioblastoma cell networks include a small, plastic population of highly active glioblastoma cells that display rhythmic Ca 2+ oscillations and are particularly connected to others. Their autonomous periodic Ca 2+ transients preceded Ca 2+ transients of other network-connected cells, activating the frequency-dependent MAPK and NF-κB pathways. Mathematical network analysis revealed that glioblastoma network topology follows scale-free and small-world properties, with periodic tumour cells frequently located in network hubs. This network design enabled resistance against random damage but was vulnerable to losing its key hubs. Targeting of autonomous rhythmic activity by selective physical ablation of periodic tumour cells or by genetic or pharmacological interference with the potassium channel KCa3.1 (also known as IK1, SK4 or KCNN4) strongly compromised global network communication. This led to a marked reduction of tumour cell viability within the entire network, reduced tumour growth in mice and extended animal survival. The dependency of glioblastoma networks on periodic Ca 2+ activity generates a vulnerability 7 that can be exploited for the development of novel therapies, such as with KCa3.1-inhibiting drugs. A population of highly interconnected cells in glioblastoma makes these tumours resistant to general damage but vulnerable to targeted disruption of this small fraction of cells and their rhythmic Ca 2+ oscillations.</description><subject>13/100</subject><subject>14/1</subject><subject>14/10</subject><subject>14/19</subject><subject>14/63</subject><subject>14/69</subject><subject>38/89</subject><subject>42</subject><subject>42/35</subject><subject>42/41</subject><subject>59/57</subject><subject>631/67/1922</subject><subject>64/60</subject><subject>692/617/375/1922</subject><subject>82/80</subject><subject>Ablation</subject><subject>Animals</subject><subject>Brain</subject><subject>Brain - metabolism</subject><subject>Brain - pathology</subject><subject>Brain cancer</subject><subject>Brain Neoplasms - genetics</subject><subject>Brain Neoplasms - metabolism</subject><subject>Brain Neoplasms - pathology</subject><subject>Brain tumors</subject><subject>Calcium - metabolism</subject><subject>Calcium ions</subject><subject>Calcium Signaling</subject><subject>Calcium signalling</subject><subject>Cell Death</subject><subject>Cell interactions</subject><subject>Cell viability</subject><subject>Communication</subject><subject>Drug development</subject><subject>Frequency dependence</subject><subject>Glioblastoma</subject><subject>Glioblastoma - genetics</subject><subject>Glioblastoma - metabolism</subject><subject>Glioblastoma - pathology</subject><subject>Glioblastoma cells</subject><subject>Glioma</subject><subject>Hubs</subject><subject>Humanities and Social Sciences</subject><subject>Lasers</subject><subject>MAP kinase</subject><subject>MAP Kinase Signaling System</subject><subject>Mice</subject><subject>multidisciplinary</subject><subject>Network analysis</subject><subject>Network design</subject><subject>Network hubs</subject><subject>Network topologies</subject><subject>NF-kappa B - metabolism</subject><subject>NF-κB protein</subject><subject>Oscillations</subject><subject>Potassium</subject><subject>Potassium channels (calcium-gated)</subject><subject>Rhythms</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Survival Analysis</subject><subject>Topology</subject><subject>Tumors</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kLtOAzEQRS0EgvD4AQq0Eg3Nwvhtl1HEU5FooLYcr5MsZHeD7Q3K32NIAImCyiPPuXdmLkKnGC4xUHUVGeZKlEBICZwTKNkOGmAmRcmEkrtoAEBUCYqKA3QY4wsAcCzZPjqgIhdcswF6GPapa7um62MR5us0b2pXWJfqVZ3WRd0Ws0XdNbZofXrvwmssqlCvfCwmweZm6rMwFLPQvaf5Mdqb2kX0J9v3CD3fXD-N7srx4-39aDguHZU8lVSJCnsspsRiTR2RTFpPsFNaVYTmX65BUi4rob2utAXiCFRMUJBaTr2jR-hi47sM3VvvYzJNHZ1fLGzr8xmGSM4UV1KojJ7_QV_yvm3eLlOCAAWieabIhnKhizH4qVmGurFhbTCYz6TNJmmTkzZfSRuWRWdb637S-OpH8h1tBugGiLnVznz4nf2P7QcsN4h_</recordid><startdate>20230105</startdate><enddate>20230105</enddate><creator>Hausmann, David</creator><creator>Hoffmann, Dirk C.</creator><creator>Venkataramani, Varun</creator><creator>Jung, Erik</creator><creator>Horschitz, Sandra</creator><creator>Tetzlaff, Svenja K.</creator><creator>Jabali, Ammar</creator><creator>Hai, Ling</creator><creator>Kessler, Tobias</creator><creator>Azoŕin, Daniel D.</creator><creator>Weil, Sophie</creator><creator>Kourtesakis, Alexandros</creator><creator>Sievers, Philipp</creator><creator>Habel, Antje</creator><creator>Breckwoldt, Michael O.</creator><creator>Karreman, Matthia A.</creator><creator>Ratliff, Miriam</creator><creator>Messmer, Julia M.</creator><creator>Yang, Yvonne</creator><creator>Reyhan, Ekin</creator><creator>Wendler, Susann</creator><creator>Löb, Cathrin</creator><creator>Mayer, Chanté</creator><creator>Figarella, Katherine</creator><creator>Osswald, Matthias</creator><creator>Solecki, Gergely</creator><creator>Sahm, Felix</creator><creator>Garaschuk, Olga</creator><creator>Kuner, Thomas</creator><creator>Koch, Philipp</creator><creator>Schlesner, Matthias</creator><creator>Wick, Wolfgang</creator><creator>Winkler, Frank</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3472-4165</orcidid><orcidid>https://orcid.org/0000-0002-0571-4710</orcidid><orcidid>https://orcid.org/0000-0001-8350-7074</orcidid><orcidid>https://orcid.org/0000-0003-1370-1933</orcidid><orcidid>https://orcid.org/0000-0002-6171-634X</orcidid><orcidid>https://orcid.org/0000-0001-5441-1962</orcidid><orcidid>https://orcid.org/0000-0003-3237-6021</orcidid><orcidid>https://orcid.org/0000-0002-9464-6544</orcidid><orcidid>https://orcid.org/0000-0003-4892-6104</orcidid><orcidid>https://orcid.org/0000-0002-2109-0186</orcidid><orcidid>https://orcid.org/0000-0003-3305-9167</orcidid><orcidid>https://orcid.org/0000-0003-3713-8786</orcidid><orcidid>https://orcid.org/0000-0002-9980-2390</orcidid><orcidid>https://orcid.org/0000-0001-7858-1501</orcidid><orcidid>https://orcid.org/0000-0002-5896-4086</orcidid><orcidid>https://orcid.org/0000-0002-2927-0886</orcidid></search><sort><creationdate>20230105</creationdate><title>Autonomous rhythmic activity in glioma networks drives brain tumour growth</title><author>Hausmann, David ; Hoffmann, Dirk C. ; Venkataramani, Varun ; Jung, Erik ; Horschitz, Sandra ; Tetzlaff, Svenja K. ; Jabali, Ammar ; Hai, Ling ; Kessler, Tobias ; Azoŕin, Daniel D. ; Weil, Sophie ; Kourtesakis, Alexandros ; Sievers, Philipp ; Habel, Antje ; Breckwoldt, Michael O. ; Karreman, Matthia A. ; Ratliff, Miriam ; Messmer, Julia M. ; Yang, Yvonne ; Reyhan, Ekin ; Wendler, Susann ; Löb, Cathrin ; Mayer, Chanté ; Figarella, Katherine ; Osswald, Matthias ; Solecki, Gergely ; Sahm, Felix ; Garaschuk, Olga ; Kuner, Thomas ; Koch, Philipp ; Schlesner, Matthias ; Wick, Wolfgang ; Winkler, Frank</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-386d1e16f2a193c2747ae21c898d23f2a5907357d69e9d9a02c20d4630797fec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>13/100</topic><topic>14/1</topic><topic>14/10</topic><topic>14/19</topic><topic>14/63</topic><topic>14/69</topic><topic>38/89</topic><topic>42</topic><topic>42/35</topic><topic>42/41</topic><topic>59/57</topic><topic>631/67/1922</topic><topic>64/60</topic><topic>692/617/375/1922</topic><topic>82/80</topic><topic>Ablation</topic><topic>Animals</topic><topic>Brain</topic><topic>Brain - metabolism</topic><topic>Brain - pathology</topic><topic>Brain cancer</topic><topic>Brain Neoplasms - genetics</topic><topic>Brain Neoplasms - metabolism</topic><topic>Brain Neoplasms - pathology</topic><topic>Brain tumors</topic><topic>Calcium - metabolism</topic><topic>Calcium ions</topic><topic>Calcium Signaling</topic><topic>Calcium signalling</topic><topic>Cell Death</topic><topic>Cell interactions</topic><topic>Cell viability</topic><topic>Communication</topic><topic>Drug development</topic><topic>Frequency dependence</topic><topic>Glioblastoma</topic><topic>Glioblastoma - genetics</topic><topic>Glioblastoma - metabolism</topic><topic>Glioblastoma - pathology</topic><topic>Glioblastoma cells</topic><topic>Glioma</topic><topic>Hubs</topic><topic>Humanities and Social Sciences</topic><topic>Lasers</topic><topic>MAP kinase</topic><topic>MAP Kinase Signaling System</topic><topic>Mice</topic><topic>multidisciplinary</topic><topic>Network analysis</topic><topic>Network design</topic><topic>Network hubs</topic><topic>Network topologies</topic><topic>NF-kappa B - metabolism</topic><topic>NF-κB protein</topic><topic>Oscillations</topic><topic>Potassium</topic><topic>Potassium channels (calcium-gated)</topic><topic>Rhythms</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Survival Analysis</topic><topic>Topology</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hausmann, David</creatorcontrib><creatorcontrib>Hoffmann, Dirk C.</creatorcontrib><creatorcontrib>Venkataramani, Varun</creatorcontrib><creatorcontrib>Jung, Erik</creatorcontrib><creatorcontrib>Horschitz, Sandra</creatorcontrib><creatorcontrib>Tetzlaff, Svenja K.</creatorcontrib><creatorcontrib>Jabali, Ammar</creatorcontrib><creatorcontrib>Hai, Ling</creatorcontrib><creatorcontrib>Kessler, Tobias</creatorcontrib><creatorcontrib>Azoŕin, Daniel D.</creatorcontrib><creatorcontrib>Weil, Sophie</creatorcontrib><creatorcontrib>Kourtesakis, Alexandros</creatorcontrib><creatorcontrib>Sievers, Philipp</creatorcontrib><creatorcontrib>Habel, Antje</creatorcontrib><creatorcontrib>Breckwoldt, Michael O.</creatorcontrib><creatorcontrib>Karreman, Matthia A.</creatorcontrib><creatorcontrib>Ratliff, Miriam</creatorcontrib><creatorcontrib>Messmer, Julia M.</creatorcontrib><creatorcontrib>Yang, Yvonne</creatorcontrib><creatorcontrib>Reyhan, Ekin</creatorcontrib><creatorcontrib>Wendler, Susann</creatorcontrib><creatorcontrib>Löb, Cathrin</creatorcontrib><creatorcontrib>Mayer, Chanté</creatorcontrib><creatorcontrib>Figarella, Katherine</creatorcontrib><creatorcontrib>Osswald, Matthias</creatorcontrib><creatorcontrib>Solecki, Gergely</creatorcontrib><creatorcontrib>Sahm, Felix</creatorcontrib><creatorcontrib>Garaschuk, Olga</creatorcontrib><creatorcontrib>Kuner, Thomas</creatorcontrib><creatorcontrib>Koch, Philipp</creatorcontrib><creatorcontrib>Schlesner, Matthias</creatorcontrib><creatorcontrib>Wick, Wolfgang</creatorcontrib><creatorcontrib>Winkler, Frank</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health Medical collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>ProQuest research library</collection><collection>ProQuest Science Journals</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hausmann, David</au><au>Hoffmann, Dirk C.</au><au>Venkataramani, Varun</au><au>Jung, Erik</au><au>Horschitz, Sandra</au><au>Tetzlaff, Svenja K.</au><au>Jabali, Ammar</au><au>Hai, Ling</au><au>Kessler, Tobias</au><au>Azoŕin, Daniel D.</au><au>Weil, Sophie</au><au>Kourtesakis, Alexandros</au><au>Sievers, Philipp</au><au>Habel, Antje</au><au>Breckwoldt, Michael O.</au><au>Karreman, Matthia A.</au><au>Ratliff, Miriam</au><au>Messmer, Julia M.</au><au>Yang, Yvonne</au><au>Reyhan, Ekin</au><au>Wendler, Susann</au><au>Löb, Cathrin</au><au>Mayer, Chanté</au><au>Figarella, Katherine</au><au>Osswald, Matthias</au><au>Solecki, Gergely</au><au>Sahm, Felix</au><au>Garaschuk, Olga</au><au>Kuner, Thomas</au><au>Koch, Philipp</au><au>Schlesner, Matthias</au><au>Wick, Wolfgang</au><au>Winkler, Frank</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Autonomous rhythmic activity in glioma networks drives brain tumour growth</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2023-01-05</date><risdate>2023</risdate><volume>613</volume><issue>7942</issue><spage>179</spage><epage>186</epage><pages>179-186</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>Diffuse gliomas, particularly glioblastomas, are incurable brain tumours 1 . They are characterized by networks of interconnected brain tumour cells that communicate via Ca 2+ transients 2 – 6 . However, the networks’ architecture and communication strategy and how these influence tumour biology remain unknown. Here we describe how glioblastoma cell networks include a small, plastic population of highly active glioblastoma cells that display rhythmic Ca 2+ oscillations and are particularly connected to others. Their autonomous periodic Ca 2+ transients preceded Ca 2+ transients of other network-connected cells, activating the frequency-dependent MAPK and NF-κB pathways. Mathematical network analysis revealed that glioblastoma network topology follows scale-free and small-world properties, with periodic tumour cells frequently located in network hubs. This network design enabled resistance against random damage but was vulnerable to losing its key hubs. Targeting of autonomous rhythmic activity by selective physical ablation of periodic tumour cells or by genetic or pharmacological interference with the potassium channel KCa3.1 (also known as IK1, SK4 or KCNN4) strongly compromised global network communication. This led to a marked reduction of tumour cell viability within the entire network, reduced tumour growth in mice and extended animal survival. The dependency of glioblastoma networks on periodic Ca 2+ activity generates a vulnerability 7 that can be exploited for the development of novel therapies, such as with KCa3.1-inhibiting drugs. A population of highly interconnected cells in glioblastoma makes these tumours resistant to general damage but vulnerable to targeted disruption of this small fraction of cells and their rhythmic Ca 2+ oscillations.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>36517594</pmid><doi>10.1038/s41586-022-05520-4</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-3472-4165</orcidid><orcidid>https://orcid.org/0000-0002-0571-4710</orcidid><orcidid>https://orcid.org/0000-0001-8350-7074</orcidid><orcidid>https://orcid.org/0000-0003-1370-1933</orcidid><orcidid>https://orcid.org/0000-0002-6171-634X</orcidid><orcidid>https://orcid.org/0000-0001-5441-1962</orcidid><orcidid>https://orcid.org/0000-0003-3237-6021</orcidid><orcidid>https://orcid.org/0000-0002-9464-6544</orcidid><orcidid>https://orcid.org/0000-0003-4892-6104</orcidid><orcidid>https://orcid.org/0000-0002-2109-0186</orcidid><orcidid>https://orcid.org/0000-0003-3305-9167</orcidid><orcidid>https://orcid.org/0000-0003-3713-8786</orcidid><orcidid>https://orcid.org/0000-0002-9980-2390</orcidid><orcidid>https://orcid.org/0000-0001-7858-1501</orcidid><orcidid>https://orcid.org/0000-0002-5896-4086</orcidid><orcidid>https://orcid.org/0000-0002-2927-0886</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 2023-01, Vol.613 (7942), p.179-186
issn 0028-0836
1476-4687
language eng
recordid cdi_proquest_miscellaneous_2754858768
source MEDLINE; Nature; Springer Online Journals - JUSTICE
subjects 13/100
14/1
14/10
14/19
14/63
14/69
38/89
42
42/35
42/41
59/57
631/67/1922
64/60
692/617/375/1922
82/80
Ablation
Animals
Brain
Brain - metabolism
Brain - pathology
Brain cancer
Brain Neoplasms - genetics
Brain Neoplasms - metabolism
Brain Neoplasms - pathology
Brain tumors
Calcium - metabolism
Calcium ions
Calcium Signaling
Calcium signalling
Cell Death
Cell interactions
Cell viability
Communication
Drug development
Frequency dependence
Glioblastoma
Glioblastoma - genetics
Glioblastoma - metabolism
Glioblastoma - pathology
Glioblastoma cells
Glioma
Hubs
Humanities and Social Sciences
Lasers
MAP kinase
MAP Kinase Signaling System
Mice
multidisciplinary
Network analysis
Network design
Network hubs
Network topologies
NF-kappa B - metabolism
NF-κB protein
Oscillations
Potassium
Potassium channels (calcium-gated)
Rhythms
Science
Science (multidisciplinary)
Survival Analysis
Topology
Tumors
title Autonomous rhythmic activity in glioma networks drives brain tumour growth
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T14%3A31%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Autonomous%20rhythmic%20activity%20in%20glioma%20networks%20drives%20brain%20tumour%20growth&rft.jtitle=Nature%20(London)&rft.au=Hausmann,%20David&rft.date=2023-01-05&rft.volume=613&rft.issue=7942&rft.spage=179&rft.epage=186&rft.pages=179-186&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-022-05520-4&rft_dat=%3Cproquest_cross%3E2754858768%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2762030295&rft_id=info:pmid/36517594&rfr_iscdi=true