The LFOPC leap-frog algorithm for constrained optimization
This paper describes an accurate and reliable new algorithm (LFOPC) for solving constrained optimization problems, through a three-phase application of the well-established leap-frog method for unconstrained optimization, to penalty function formulations of the original constrained problems. The alg...
Gespeichert in:
Veröffentlicht in: | Computers & mathematics with applications (1987) 2000-10, Vol.40 (8), p.1085-1096 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1096 |
---|---|
container_issue | 8 |
container_start_page | 1085 |
container_title | Computers & mathematics with applications (1987) |
container_volume | 40 |
creator | Snyman, J.A. |
description | This paper describes an accurate and reliable new algorithm (LFOPC) for solving constrained optimization problems, through a three-phase application of the well-established leap-frog method for unconstrained optimization, to penalty function formulations of the original constrained problems. The algorithm represents a considerable improvement over an earlier version (LFOPCON) which requires the judicious choice of parameter settings for efficient use. The current algorithm automatically executes normalization and scaling operations on the gradients of the constraints. This results in a robust algorithm that, apart from convergence tolerances, requires virtually no parameter settings. The method has been well tested, on both standard analytical test problems and practical engineering design problems. |
doi_str_mv | 10.1016/S0898-1221(00)85018-X |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27547715</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S089812210085018X</els_id><sourcerecordid>27547715</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-7f741aef13cf27884a45080d41355412eb1b96431021ca9b34972e1c630374463</originalsourceid><addsrcrecordid>eNqFkF1LwzAYhYMoOKc_QeiV6EX1fZukSb0RGU6FwQQn7C5kabpF2qYmnaC_3n2It16dm-ccOA8h5wjXCJjfvIIsZIpZhpcAV5IDynR-QAYoBU1FnstDMvhDjslJjO8AwGgGA3I7W9lkMp6-jJLa6i6tgl8mul764PpVk1Q-JMa3sQ_atbZMfNe7xn3r3vn2lBxVuo727DeH5G38MBs9pZPp4_PofpIaKnmfikow1LZCaqpMSMk04yChZEg5Z5jZBS6KnFGEDI0uFpQVIrNocgpUMJbTIbnY73bBf6xt7FXjorF1rVvr11FlgjMhkG9AvgdN8DEGW6kuuEaHL4WgtqbUzpTaalAAamdKzTe9u33Pbl58OhtUNM62xpYuWNOr0rt_Fn4ASlluUA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27547715</pqid></control><display><type>article</type><title>The LFOPC leap-frog algorithm for constrained optimization</title><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Snyman, J.A.</creator><creatorcontrib>Snyman, J.A.</creatorcontrib><description>This paper describes an accurate and reliable new algorithm (LFOPC) for solving constrained optimization problems, through a three-phase application of the well-established leap-frog method for unconstrained optimization, to penalty function formulations of the original constrained problems. The algorithm represents a considerable improvement over an earlier version (LFOPCON) which requires the judicious choice of parameter settings for efficient use. The current algorithm automatically executes normalization and scaling operations on the gradients of the constraints. This results in a robust algorithm that, apart from convergence tolerances, requires virtually no parameter settings. The method has been well tested, on both standard analytical test problems and practical engineering design problems.</description><identifier>ISSN: 0898-1221</identifier><identifier>EISSN: 1873-7668</identifier><identifier>DOI: 10.1016/S0898-1221(00)85018-X</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Constrained optimization ; Leap-frog method ; Penalty function formulations ; Robust algorithm</subject><ispartof>Computers & mathematics with applications (1987), 2000-10, Vol.40 (8), p.1085-1096</ispartof><rights>2000</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-7f741aef13cf27884a45080d41355412eb1b96431021ca9b34972e1c630374463</citedby><cites>FETCH-LOGICAL-c385t-7f741aef13cf27884a45080d41355412eb1b96431021ca9b34972e1c630374463</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0898-1221(00)85018-X$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Snyman, J.A.</creatorcontrib><title>The LFOPC leap-frog algorithm for constrained optimization</title><title>Computers & mathematics with applications (1987)</title><description>This paper describes an accurate and reliable new algorithm (LFOPC) for solving constrained optimization problems, through a three-phase application of the well-established leap-frog method for unconstrained optimization, to penalty function formulations of the original constrained problems. The algorithm represents a considerable improvement over an earlier version (LFOPCON) which requires the judicious choice of parameter settings for efficient use. The current algorithm automatically executes normalization and scaling operations on the gradients of the constraints. This results in a robust algorithm that, apart from convergence tolerances, requires virtually no parameter settings. The method has been well tested, on both standard analytical test problems and practical engineering design problems.</description><subject>Constrained optimization</subject><subject>Leap-frog method</subject><subject>Penalty function formulations</subject><subject>Robust algorithm</subject><issn>0898-1221</issn><issn>1873-7668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNqFkF1LwzAYhYMoOKc_QeiV6EX1fZukSb0RGU6FwQQn7C5kabpF2qYmnaC_3n2It16dm-ccOA8h5wjXCJjfvIIsZIpZhpcAV5IDynR-QAYoBU1FnstDMvhDjslJjO8AwGgGA3I7W9lkMp6-jJLa6i6tgl8mul764PpVk1Q-JMa3sQ_atbZMfNe7xn3r3vn2lBxVuo727DeH5G38MBs9pZPp4_PofpIaKnmfikow1LZCaqpMSMk04yChZEg5Z5jZBS6KnFGEDI0uFpQVIrNocgpUMJbTIbnY73bBf6xt7FXjorF1rVvr11FlgjMhkG9AvgdN8DEGW6kuuEaHL4WgtqbUzpTaalAAamdKzTe9u33Pbl58OhtUNM62xpYuWNOr0rt_Fn4ASlluUA</recordid><startdate>20001001</startdate><enddate>20001001</enddate><creator>Snyman, J.A.</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20001001</creationdate><title>The LFOPC leap-frog algorithm for constrained optimization</title><author>Snyman, J.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-7f741aef13cf27884a45080d41355412eb1b96431021ca9b34972e1c630374463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Constrained optimization</topic><topic>Leap-frog method</topic><topic>Penalty function formulations</topic><topic>Robust algorithm</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Snyman, J.A.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers & mathematics with applications (1987)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Snyman, J.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The LFOPC leap-frog algorithm for constrained optimization</atitle><jtitle>Computers & mathematics with applications (1987)</jtitle><date>2000-10-01</date><risdate>2000</risdate><volume>40</volume><issue>8</issue><spage>1085</spage><epage>1096</epage><pages>1085-1096</pages><issn>0898-1221</issn><eissn>1873-7668</eissn><abstract>This paper describes an accurate and reliable new algorithm (LFOPC) for solving constrained optimization problems, through a three-phase application of the well-established leap-frog method for unconstrained optimization, to penalty function formulations of the original constrained problems. The algorithm represents a considerable improvement over an earlier version (LFOPCON) which requires the judicious choice of parameter settings for efficient use. The current algorithm automatically executes normalization and scaling operations on the gradients of the constraints. This results in a robust algorithm that, apart from convergence tolerances, requires virtually no parameter settings. The method has been well tested, on both standard analytical test problems and practical engineering design problems.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/S0898-1221(00)85018-X</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0898-1221 |
ispartof | Computers & mathematics with applications (1987), 2000-10, Vol.40 (8), p.1085-1096 |
issn | 0898-1221 1873-7668 |
language | eng |
recordid | cdi_proquest_miscellaneous_27547715 |
source | Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Constrained optimization Leap-frog method Penalty function formulations Robust algorithm |
title | The LFOPC leap-frog algorithm for constrained optimization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T00%3A16%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20LFOPC%20leap-frog%20algorithm%20for%20constrained%20optimization&rft.jtitle=Computers%20&%20mathematics%20with%20applications%20(1987)&rft.au=Snyman,%20J.A.&rft.date=2000-10-01&rft.volume=40&rft.issue=8&rft.spage=1085&rft.epage=1096&rft.pages=1085-1096&rft.issn=0898-1221&rft.eissn=1873-7668&rft_id=info:doi/10.1016/S0898-1221(00)85018-X&rft_dat=%3Cproquest_cross%3E27547715%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27547715&rft_id=info:pmid/&rft_els_id=S089812210085018X&rfr_iscdi=true |