The LFOPC leap-frog algorithm for constrained optimization

This paper describes an accurate and reliable new algorithm (LFOPC) for solving constrained optimization problems, through a three-phase application of the well-established leap-frog method for unconstrained optimization, to penalty function formulations of the original constrained problems. The alg...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & mathematics with applications (1987) 2000-10, Vol.40 (8), p.1085-1096
1. Verfasser: Snyman, J.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1096
container_issue 8
container_start_page 1085
container_title Computers & mathematics with applications (1987)
container_volume 40
creator Snyman, J.A.
description This paper describes an accurate and reliable new algorithm (LFOPC) for solving constrained optimization problems, through a three-phase application of the well-established leap-frog method for unconstrained optimization, to penalty function formulations of the original constrained problems. The algorithm represents a considerable improvement over an earlier version (LFOPCON) which requires the judicious choice of parameter settings for efficient use. The current algorithm automatically executes normalization and scaling operations on the gradients of the constraints. This results in a robust algorithm that, apart from convergence tolerances, requires virtually no parameter settings. The method has been well tested, on both standard analytical test problems and practical engineering design problems.
doi_str_mv 10.1016/S0898-1221(00)85018-X
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27547715</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S089812210085018X</els_id><sourcerecordid>27547715</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-7f741aef13cf27884a45080d41355412eb1b96431021ca9b34972e1c630374463</originalsourceid><addsrcrecordid>eNqFkF1LwzAYhYMoOKc_QeiV6EX1fZukSb0RGU6FwQQn7C5kabpF2qYmnaC_3n2It16dm-ccOA8h5wjXCJjfvIIsZIpZhpcAV5IDynR-QAYoBU1FnstDMvhDjslJjO8AwGgGA3I7W9lkMp6-jJLa6i6tgl8mul764PpVk1Q-JMa3sQ_atbZMfNe7xn3r3vn2lBxVuo727DeH5G38MBs9pZPp4_PofpIaKnmfikow1LZCaqpMSMk04yChZEg5Z5jZBS6KnFGEDI0uFpQVIrNocgpUMJbTIbnY73bBf6xt7FXjorF1rVvr11FlgjMhkG9AvgdN8DEGW6kuuEaHL4WgtqbUzpTaalAAamdKzTe9u33Pbl58OhtUNM62xpYuWNOr0rt_Fn4ASlluUA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27547715</pqid></control><display><type>article</type><title>The LFOPC leap-frog algorithm for constrained optimization</title><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Snyman, J.A.</creator><creatorcontrib>Snyman, J.A.</creatorcontrib><description>This paper describes an accurate and reliable new algorithm (LFOPC) for solving constrained optimization problems, through a three-phase application of the well-established leap-frog method for unconstrained optimization, to penalty function formulations of the original constrained problems. The algorithm represents a considerable improvement over an earlier version (LFOPCON) which requires the judicious choice of parameter settings for efficient use. The current algorithm automatically executes normalization and scaling operations on the gradients of the constraints. This results in a robust algorithm that, apart from convergence tolerances, requires virtually no parameter settings. The method has been well tested, on both standard analytical test problems and practical engineering design problems.</description><identifier>ISSN: 0898-1221</identifier><identifier>EISSN: 1873-7668</identifier><identifier>DOI: 10.1016/S0898-1221(00)85018-X</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Constrained optimization ; Leap-frog method ; Penalty function formulations ; Robust algorithm</subject><ispartof>Computers &amp; mathematics with applications (1987), 2000-10, Vol.40 (8), p.1085-1096</ispartof><rights>2000</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-7f741aef13cf27884a45080d41355412eb1b96431021ca9b34972e1c630374463</citedby><cites>FETCH-LOGICAL-c385t-7f741aef13cf27884a45080d41355412eb1b96431021ca9b34972e1c630374463</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0898-1221(00)85018-X$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Snyman, J.A.</creatorcontrib><title>The LFOPC leap-frog algorithm for constrained optimization</title><title>Computers &amp; mathematics with applications (1987)</title><description>This paper describes an accurate and reliable new algorithm (LFOPC) for solving constrained optimization problems, through a three-phase application of the well-established leap-frog method for unconstrained optimization, to penalty function formulations of the original constrained problems. The algorithm represents a considerable improvement over an earlier version (LFOPCON) which requires the judicious choice of parameter settings for efficient use. The current algorithm automatically executes normalization and scaling operations on the gradients of the constraints. This results in a robust algorithm that, apart from convergence tolerances, requires virtually no parameter settings. The method has been well tested, on both standard analytical test problems and practical engineering design problems.</description><subject>Constrained optimization</subject><subject>Leap-frog method</subject><subject>Penalty function formulations</subject><subject>Robust algorithm</subject><issn>0898-1221</issn><issn>1873-7668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNqFkF1LwzAYhYMoOKc_QeiV6EX1fZukSb0RGU6FwQQn7C5kabpF2qYmnaC_3n2It16dm-ccOA8h5wjXCJjfvIIsZIpZhpcAV5IDynR-QAYoBU1FnstDMvhDjslJjO8AwGgGA3I7W9lkMp6-jJLa6i6tgl8mul764PpVk1Q-JMa3sQ_atbZMfNe7xn3r3vn2lBxVuo727DeH5G38MBs9pZPp4_PofpIaKnmfikow1LZCaqpMSMk04yChZEg5Z5jZBS6KnFGEDI0uFpQVIrNocgpUMJbTIbnY73bBf6xt7FXjorF1rVvr11FlgjMhkG9AvgdN8DEGW6kuuEaHL4WgtqbUzpTaalAAamdKzTe9u33Pbl58OhtUNM62xpYuWNOr0rt_Fn4ASlluUA</recordid><startdate>20001001</startdate><enddate>20001001</enddate><creator>Snyman, J.A.</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20001001</creationdate><title>The LFOPC leap-frog algorithm for constrained optimization</title><author>Snyman, J.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-7f741aef13cf27884a45080d41355412eb1b96431021ca9b34972e1c630374463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Constrained optimization</topic><topic>Leap-frog method</topic><topic>Penalty function formulations</topic><topic>Robust algorithm</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Snyman, J.A.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers &amp; mathematics with applications (1987)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Snyman, J.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The LFOPC leap-frog algorithm for constrained optimization</atitle><jtitle>Computers &amp; mathematics with applications (1987)</jtitle><date>2000-10-01</date><risdate>2000</risdate><volume>40</volume><issue>8</issue><spage>1085</spage><epage>1096</epage><pages>1085-1096</pages><issn>0898-1221</issn><eissn>1873-7668</eissn><abstract>This paper describes an accurate and reliable new algorithm (LFOPC) for solving constrained optimization problems, through a three-phase application of the well-established leap-frog method for unconstrained optimization, to penalty function formulations of the original constrained problems. The algorithm represents a considerable improvement over an earlier version (LFOPCON) which requires the judicious choice of parameter settings for efficient use. The current algorithm automatically executes normalization and scaling operations on the gradients of the constraints. This results in a robust algorithm that, apart from convergence tolerances, requires virtually no parameter settings. The method has been well tested, on both standard analytical test problems and practical engineering design problems.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/S0898-1221(00)85018-X</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0898-1221
ispartof Computers & mathematics with applications (1987), 2000-10, Vol.40 (8), p.1085-1096
issn 0898-1221
1873-7668
language eng
recordid cdi_proquest_miscellaneous_27547715
source Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Constrained optimization
Leap-frog method
Penalty function formulations
Robust algorithm
title The LFOPC leap-frog algorithm for constrained optimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T00%3A16%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20LFOPC%20leap-frog%20algorithm%20for%20constrained%20optimization&rft.jtitle=Computers%20&%20mathematics%20with%20applications%20(1987)&rft.au=Snyman,%20J.A.&rft.date=2000-10-01&rft.volume=40&rft.issue=8&rft.spage=1085&rft.epage=1096&rft.pages=1085-1096&rft.issn=0898-1221&rft.eissn=1873-7668&rft_id=info:doi/10.1016/S0898-1221(00)85018-X&rft_dat=%3Cproquest_cross%3E27547715%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27547715&rft_id=info:pmid/&rft_els_id=S089812210085018X&rfr_iscdi=true