Size driven barrier to chirality reversal in electric control of magnetic vortices in ferromagnetic nanodiscs

New high density storage media and spintronic devices come about with a progressing demand for the miniaturization of ferromagnetic structures. Vortex ordering of magnetic dipoles in such structures has been repeatedly observed as a stable state, offering the possibility of chirality in these states...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale 2023-01, Vol.15 (2), p.77-717
Hauptverfasser: Aldulaimi, W. A. S, Okatan, M. B, Sendur, K, Onbasli, M. C, Misirlioglu, I. B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 717
container_issue 2
container_start_page 77
container_title Nanoscale
container_volume 15
creator Aldulaimi, W. A. S
Okatan, M. B
Sendur, K
Onbasli, M. C
Misirlioglu, I. B
description New high density storage media and spintronic devices come about with a progressing demand for the miniaturization of ferromagnetic structures. Vortex ordering of magnetic dipoles in such structures has been repeatedly observed as a stable state, offering the possibility of chirality in these states as a means to store information at high density. Electric pulses and magnetoelectric coupling are attractive options to control the chirality of such states in a deterministic manner. Here, we demonstrate the chirality reversal of vortex states in ferromagnetic nanodiscs via pulsed electric fields using a micromagnetic approach and focus on the analysis of the energetics of the reversal process. A strong thickness dependence of the chirality reversal in the nanodiscs is found that emanates from the anisotropy of the demagnetizing fields. Our results indicate that chiral switching of the magnetic moments in thin discs can give rise to a transient vortex-antivortex lattice not observed in thicker discs. This difference in the chirality reversal mechanism emanates from profoundly different energy barriers to overcome in thin and thicker discs. We also report the polarity-chirality correlation of a vortex that appears to depend on the aspect ratio of the nanodiscs. We study the response of nanoscale ferromagnetic permalloy discs stabilized in vortex state to pulsed electric fields and analyze the energy barrier to the chirality reversal process using a micromagnetic simulation.
doi_str_mv 10.1039/d2nr02768b
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2754501514</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2754501514</sourcerecordid><originalsourceid>FETCH-LOGICAL-c267t-369e9a19525f868df1c789da4de036918412aae1aeacfc5ca8d3e5b0316ff3d53</originalsourceid><addsrcrecordid>eNpd0d9LHDEQB_AgLd5pffFdCfgiwtn82GR3H-uvVhALbX1ecslEc-wm18negf71jT17Qp8mZD5MhnwJOeTsnDPZfnYiIhO1buY7ZCpYxWZS1uLD9qyrCdnLecGYbqWWu2QiteKa6WpKhp_hBajDsIZI5wYxANIxUfsU0PRhfKYIa8BsehoihR7siMFSm-KIqafJ08E8RhjL3TphKZBfoQfEtO1EE5ML2eZP5KM3fYaDt7pPHm6uf11-m919_3p7-eVuZoWux5nULbSGt0oo3-jGeW7rpnWmcsBKjzcVF8YAN2Cst8qaxklQcya59l46JffJ6WbuEtPvFeSxG8rz0PcmQlrlTtSqUowrXhV68h9dpBXGsl1RmtWqrhte1NlGWUw5I_huiWEw-Nxx1r2G0F2J-x9_Q7go-Pht5Go-gNvSf79ewNEGYLbb7nuK8g8Q6Y1r</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2760757781</pqid></control><display><type>article</type><title>Size driven barrier to chirality reversal in electric control of magnetic vortices in ferromagnetic nanodiscs</title><source>Royal Society Of Chemistry Journals</source><creator>Aldulaimi, W. A. S ; Okatan, M. B ; Sendur, K ; Onbasli, M. C ; Misirlioglu, I. B</creator><creatorcontrib>Aldulaimi, W. A. S ; Okatan, M. B ; Sendur, K ; Onbasli, M. C ; Misirlioglu, I. B</creatorcontrib><description>New high density storage media and spintronic devices come about with a progressing demand for the miniaturization of ferromagnetic structures. Vortex ordering of magnetic dipoles in such structures has been repeatedly observed as a stable state, offering the possibility of chirality in these states as a means to store information at high density. Electric pulses and magnetoelectric coupling are attractive options to control the chirality of such states in a deterministic manner. Here, we demonstrate the chirality reversal of vortex states in ferromagnetic nanodiscs via pulsed electric fields using a micromagnetic approach and focus on the analysis of the energetics of the reversal process. A strong thickness dependence of the chirality reversal in the nanodiscs is found that emanates from the anisotropy of the demagnetizing fields. Our results indicate that chiral switching of the magnetic moments in thin discs can give rise to a transient vortex-antivortex lattice not observed in thicker discs. This difference in the chirality reversal mechanism emanates from profoundly different energy barriers to overcome in thin and thicker discs. We also report the polarity-chirality correlation of a vortex that appears to depend on the aspect ratio of the nanodiscs. We study the response of nanoscale ferromagnetic permalloy discs stabilized in vortex state to pulsed electric fields and analyze the energy barrier to the chirality reversal process using a micromagnetic simulation.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/d2nr02768b</identifier><identifier>PMID: 36516064</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Anisotropy ; Aspect ratio ; Chirality ; Electric control ; Electric fields ; Electric pulses ; Emission ; Ferromagnetism ; High density ; Magnetic dipoles ; Magnetic moments ; Miniaturization ; Vortices</subject><ispartof>Nanoscale, 2023-01, Vol.15 (2), p.77-717</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c267t-369e9a19525f868df1c789da4de036918412aae1aeacfc5ca8d3e5b0316ff3d53</citedby><cites>FETCH-LOGICAL-c267t-369e9a19525f868df1c789da4de036918412aae1aeacfc5ca8d3e5b0316ff3d53</cites><orcidid>0000-0002-9421-7846 ; 0000-0001-7709-9457 ; 0000-0003-3210-7542 ; 0000-0002-3554-7810 ; 0000-0002-6054-0119</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36516064$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Aldulaimi, W. A. S</creatorcontrib><creatorcontrib>Okatan, M. B</creatorcontrib><creatorcontrib>Sendur, K</creatorcontrib><creatorcontrib>Onbasli, M. C</creatorcontrib><creatorcontrib>Misirlioglu, I. B</creatorcontrib><title>Size driven barrier to chirality reversal in electric control of magnetic vortices in ferromagnetic nanodiscs</title><title>Nanoscale</title><addtitle>Nanoscale</addtitle><description>New high density storage media and spintronic devices come about with a progressing demand for the miniaturization of ferromagnetic structures. Vortex ordering of magnetic dipoles in such structures has been repeatedly observed as a stable state, offering the possibility of chirality in these states as a means to store information at high density. Electric pulses and magnetoelectric coupling are attractive options to control the chirality of such states in a deterministic manner. Here, we demonstrate the chirality reversal of vortex states in ferromagnetic nanodiscs via pulsed electric fields using a micromagnetic approach and focus on the analysis of the energetics of the reversal process. A strong thickness dependence of the chirality reversal in the nanodiscs is found that emanates from the anisotropy of the demagnetizing fields. Our results indicate that chiral switching of the magnetic moments in thin discs can give rise to a transient vortex-antivortex lattice not observed in thicker discs. This difference in the chirality reversal mechanism emanates from profoundly different energy barriers to overcome in thin and thicker discs. We also report the polarity-chirality correlation of a vortex that appears to depend on the aspect ratio of the nanodiscs. We study the response of nanoscale ferromagnetic permalloy discs stabilized in vortex state to pulsed electric fields and analyze the energy barrier to the chirality reversal process using a micromagnetic simulation.</description><subject>Anisotropy</subject><subject>Aspect ratio</subject><subject>Chirality</subject><subject>Electric control</subject><subject>Electric fields</subject><subject>Electric pulses</subject><subject>Emission</subject><subject>Ferromagnetism</subject><subject>High density</subject><subject>Magnetic dipoles</subject><subject>Magnetic moments</subject><subject>Miniaturization</subject><subject>Vortices</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpd0d9LHDEQB_AgLd5pffFdCfgiwtn82GR3H-uvVhALbX1ecslEc-wm18negf71jT17Qp8mZD5MhnwJOeTsnDPZfnYiIhO1buY7ZCpYxWZS1uLD9qyrCdnLecGYbqWWu2QiteKa6WpKhp_hBajDsIZI5wYxANIxUfsU0PRhfKYIa8BsehoihR7siMFSm-KIqafJ08E8RhjL3TphKZBfoQfEtO1EE5ML2eZP5KM3fYaDt7pPHm6uf11-m919_3p7-eVuZoWux5nULbSGt0oo3-jGeW7rpnWmcsBKjzcVF8YAN2Cst8qaxklQcya59l46JffJ6WbuEtPvFeSxG8rz0PcmQlrlTtSqUowrXhV68h9dpBXGsl1RmtWqrhte1NlGWUw5I_huiWEw-Nxx1r2G0F2J-x9_Q7go-Pht5Go-gNvSf79ewNEGYLbb7nuK8g8Q6Y1r</recordid><startdate>20230105</startdate><enddate>20230105</enddate><creator>Aldulaimi, W. A. S</creator><creator>Okatan, M. B</creator><creator>Sendur, K</creator><creator>Onbasli, M. C</creator><creator>Misirlioglu, I. B</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9421-7846</orcidid><orcidid>https://orcid.org/0000-0001-7709-9457</orcidid><orcidid>https://orcid.org/0000-0003-3210-7542</orcidid><orcidid>https://orcid.org/0000-0002-3554-7810</orcidid><orcidid>https://orcid.org/0000-0002-6054-0119</orcidid></search><sort><creationdate>20230105</creationdate><title>Size driven barrier to chirality reversal in electric control of magnetic vortices in ferromagnetic nanodiscs</title><author>Aldulaimi, W. A. S ; Okatan, M. B ; Sendur, K ; Onbasli, M. C ; Misirlioglu, I. B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c267t-369e9a19525f868df1c789da4de036918412aae1aeacfc5ca8d3e5b0316ff3d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Anisotropy</topic><topic>Aspect ratio</topic><topic>Chirality</topic><topic>Electric control</topic><topic>Electric fields</topic><topic>Electric pulses</topic><topic>Emission</topic><topic>Ferromagnetism</topic><topic>High density</topic><topic>Magnetic dipoles</topic><topic>Magnetic moments</topic><topic>Miniaturization</topic><topic>Vortices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aldulaimi, W. A. S</creatorcontrib><creatorcontrib>Okatan, M. B</creatorcontrib><creatorcontrib>Sendur, K</creatorcontrib><creatorcontrib>Onbasli, M. C</creatorcontrib><creatorcontrib>Misirlioglu, I. B</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aldulaimi, W. A. S</au><au>Okatan, M. B</au><au>Sendur, K</au><au>Onbasli, M. C</au><au>Misirlioglu, I. B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Size driven barrier to chirality reversal in electric control of magnetic vortices in ferromagnetic nanodiscs</atitle><jtitle>Nanoscale</jtitle><addtitle>Nanoscale</addtitle><date>2023-01-05</date><risdate>2023</risdate><volume>15</volume><issue>2</issue><spage>77</spage><epage>717</epage><pages>77-717</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>New high density storage media and spintronic devices come about with a progressing demand for the miniaturization of ferromagnetic structures. Vortex ordering of magnetic dipoles in such structures has been repeatedly observed as a stable state, offering the possibility of chirality in these states as a means to store information at high density. Electric pulses and magnetoelectric coupling are attractive options to control the chirality of such states in a deterministic manner. Here, we demonstrate the chirality reversal of vortex states in ferromagnetic nanodiscs via pulsed electric fields using a micromagnetic approach and focus on the analysis of the energetics of the reversal process. A strong thickness dependence of the chirality reversal in the nanodiscs is found that emanates from the anisotropy of the demagnetizing fields. Our results indicate that chiral switching of the magnetic moments in thin discs can give rise to a transient vortex-antivortex lattice not observed in thicker discs. This difference in the chirality reversal mechanism emanates from profoundly different energy barriers to overcome in thin and thicker discs. We also report the polarity-chirality correlation of a vortex that appears to depend on the aspect ratio of the nanodiscs. We study the response of nanoscale ferromagnetic permalloy discs stabilized in vortex state to pulsed electric fields and analyze the energy barrier to the chirality reversal process using a micromagnetic simulation.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>36516064</pmid><doi>10.1039/d2nr02768b</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-9421-7846</orcidid><orcidid>https://orcid.org/0000-0001-7709-9457</orcidid><orcidid>https://orcid.org/0000-0003-3210-7542</orcidid><orcidid>https://orcid.org/0000-0002-3554-7810</orcidid><orcidid>https://orcid.org/0000-0002-6054-0119</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2040-3364
ispartof Nanoscale, 2023-01, Vol.15 (2), p.77-717
issn 2040-3364
2040-3372
language eng
recordid cdi_proquest_miscellaneous_2754501514
source Royal Society Of Chemistry Journals
subjects Anisotropy
Aspect ratio
Chirality
Electric control
Electric fields
Electric pulses
Emission
Ferromagnetism
High density
Magnetic dipoles
Magnetic moments
Miniaturization
Vortices
title Size driven barrier to chirality reversal in electric control of magnetic vortices in ferromagnetic nanodiscs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T10%3A58%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Size%20driven%20barrier%20to%20chirality%20reversal%20in%20electric%20control%20of%20magnetic%20vortices%20in%20ferromagnetic%20nanodiscs&rft.jtitle=Nanoscale&rft.au=Aldulaimi,%20W.%20A.%20S&rft.date=2023-01-05&rft.volume=15&rft.issue=2&rft.spage=77&rft.epage=717&rft.pages=77-717&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/d2nr02768b&rft_dat=%3Cproquest_cross%3E2754501514%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2760757781&rft_id=info:pmid/36516064&rfr_iscdi=true