Size driven barrier to chirality reversal in electric control of magnetic vortices in ferromagnetic nanodiscs
New high density storage media and spintronic devices come about with a progressing demand for the miniaturization of ferromagnetic structures. Vortex ordering of magnetic dipoles in such structures has been repeatedly observed as a stable state, offering the possibility of chirality in these states...
Gespeichert in:
Veröffentlicht in: | Nanoscale 2023-01, Vol.15 (2), p.77-717 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 717 |
---|---|
container_issue | 2 |
container_start_page | 77 |
container_title | Nanoscale |
container_volume | 15 |
creator | Aldulaimi, W. A. S Okatan, M. B Sendur, K Onbasli, M. C Misirlioglu, I. B |
description | New high density storage media and spintronic devices come about with a progressing demand for the miniaturization of ferromagnetic structures. Vortex ordering of magnetic dipoles in such structures has been repeatedly observed as a stable state, offering the possibility of chirality in these states as a means to store information at high density. Electric pulses and magnetoelectric coupling are attractive options to control the chirality of such states in a deterministic manner. Here, we demonstrate the chirality reversal of vortex states in ferromagnetic nanodiscs
via
pulsed electric fields using a micromagnetic approach and focus on the analysis of the energetics of the reversal process. A strong thickness dependence of the chirality reversal in the nanodiscs is found that emanates from the anisotropy of the demagnetizing fields. Our results indicate that chiral switching of the magnetic moments in thin discs can give rise to a transient vortex-antivortex lattice not observed in thicker discs. This difference in the chirality reversal mechanism emanates from profoundly different energy barriers to overcome in thin and thicker discs. We also report the polarity-chirality correlation of a vortex that appears to depend on the aspect ratio of the nanodiscs.
We study the response of nanoscale ferromagnetic permalloy discs stabilized in vortex state to pulsed electric fields and analyze the energy barrier to the chirality reversal process using a micromagnetic simulation. |
doi_str_mv | 10.1039/d2nr02768b |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2754501514</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2754501514</sourcerecordid><originalsourceid>FETCH-LOGICAL-c267t-369e9a19525f868df1c789da4de036918412aae1aeacfc5ca8d3e5b0316ff3d53</originalsourceid><addsrcrecordid>eNpd0d9LHDEQB_AgLd5pffFdCfgiwtn82GR3H-uvVhALbX1ecslEc-wm18negf71jT17Qp8mZD5MhnwJOeTsnDPZfnYiIhO1buY7ZCpYxWZS1uLD9qyrCdnLecGYbqWWu2QiteKa6WpKhp_hBajDsIZI5wYxANIxUfsU0PRhfKYIa8BsehoihR7siMFSm-KIqafJ08E8RhjL3TphKZBfoQfEtO1EE5ML2eZP5KM3fYaDt7pPHm6uf11-m919_3p7-eVuZoWux5nULbSGt0oo3-jGeW7rpnWmcsBKjzcVF8YAN2Cst8qaxklQcya59l46JffJ6WbuEtPvFeSxG8rz0PcmQlrlTtSqUowrXhV68h9dpBXGsl1RmtWqrhte1NlGWUw5I_huiWEw-Nxx1r2G0F2J-x9_Q7go-Pht5Go-gNvSf79ewNEGYLbb7nuK8g8Q6Y1r</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2760757781</pqid></control><display><type>article</type><title>Size driven barrier to chirality reversal in electric control of magnetic vortices in ferromagnetic nanodiscs</title><source>Royal Society Of Chemistry Journals</source><creator>Aldulaimi, W. A. S ; Okatan, M. B ; Sendur, K ; Onbasli, M. C ; Misirlioglu, I. B</creator><creatorcontrib>Aldulaimi, W. A. S ; Okatan, M. B ; Sendur, K ; Onbasli, M. C ; Misirlioglu, I. B</creatorcontrib><description>New high density storage media and spintronic devices come about with a progressing demand for the miniaturization of ferromagnetic structures. Vortex ordering of magnetic dipoles in such structures has been repeatedly observed as a stable state, offering the possibility of chirality in these states as a means to store information at high density. Electric pulses and magnetoelectric coupling are attractive options to control the chirality of such states in a deterministic manner. Here, we demonstrate the chirality reversal of vortex states in ferromagnetic nanodiscs
via
pulsed electric fields using a micromagnetic approach and focus on the analysis of the energetics of the reversal process. A strong thickness dependence of the chirality reversal in the nanodiscs is found that emanates from the anisotropy of the demagnetizing fields. Our results indicate that chiral switching of the magnetic moments in thin discs can give rise to a transient vortex-antivortex lattice not observed in thicker discs. This difference in the chirality reversal mechanism emanates from profoundly different energy barriers to overcome in thin and thicker discs. We also report the polarity-chirality correlation of a vortex that appears to depend on the aspect ratio of the nanodiscs.
We study the response of nanoscale ferromagnetic permalloy discs stabilized in vortex state to pulsed electric fields and analyze the energy barrier to the chirality reversal process using a micromagnetic simulation.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/d2nr02768b</identifier><identifier>PMID: 36516064</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Anisotropy ; Aspect ratio ; Chirality ; Electric control ; Electric fields ; Electric pulses ; Emission ; Ferromagnetism ; High density ; Magnetic dipoles ; Magnetic moments ; Miniaturization ; Vortices</subject><ispartof>Nanoscale, 2023-01, Vol.15 (2), p.77-717</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c267t-369e9a19525f868df1c789da4de036918412aae1aeacfc5ca8d3e5b0316ff3d53</citedby><cites>FETCH-LOGICAL-c267t-369e9a19525f868df1c789da4de036918412aae1aeacfc5ca8d3e5b0316ff3d53</cites><orcidid>0000-0002-9421-7846 ; 0000-0001-7709-9457 ; 0000-0003-3210-7542 ; 0000-0002-3554-7810 ; 0000-0002-6054-0119</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36516064$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Aldulaimi, W. A. S</creatorcontrib><creatorcontrib>Okatan, M. B</creatorcontrib><creatorcontrib>Sendur, K</creatorcontrib><creatorcontrib>Onbasli, M. C</creatorcontrib><creatorcontrib>Misirlioglu, I. B</creatorcontrib><title>Size driven barrier to chirality reversal in electric control of magnetic vortices in ferromagnetic nanodiscs</title><title>Nanoscale</title><addtitle>Nanoscale</addtitle><description>New high density storage media and spintronic devices come about with a progressing demand for the miniaturization of ferromagnetic structures. Vortex ordering of magnetic dipoles in such structures has been repeatedly observed as a stable state, offering the possibility of chirality in these states as a means to store information at high density. Electric pulses and magnetoelectric coupling are attractive options to control the chirality of such states in a deterministic manner. Here, we demonstrate the chirality reversal of vortex states in ferromagnetic nanodiscs
via
pulsed electric fields using a micromagnetic approach and focus on the analysis of the energetics of the reversal process. A strong thickness dependence of the chirality reversal in the nanodiscs is found that emanates from the anisotropy of the demagnetizing fields. Our results indicate that chiral switching of the magnetic moments in thin discs can give rise to a transient vortex-antivortex lattice not observed in thicker discs. This difference in the chirality reversal mechanism emanates from profoundly different energy barriers to overcome in thin and thicker discs. We also report the polarity-chirality correlation of a vortex that appears to depend on the aspect ratio of the nanodiscs.
We study the response of nanoscale ferromagnetic permalloy discs stabilized in vortex state to pulsed electric fields and analyze the energy barrier to the chirality reversal process using a micromagnetic simulation.</description><subject>Anisotropy</subject><subject>Aspect ratio</subject><subject>Chirality</subject><subject>Electric control</subject><subject>Electric fields</subject><subject>Electric pulses</subject><subject>Emission</subject><subject>Ferromagnetism</subject><subject>High density</subject><subject>Magnetic dipoles</subject><subject>Magnetic moments</subject><subject>Miniaturization</subject><subject>Vortices</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpd0d9LHDEQB_AgLd5pffFdCfgiwtn82GR3H-uvVhALbX1ecslEc-wm18negf71jT17Qp8mZD5MhnwJOeTsnDPZfnYiIhO1buY7ZCpYxWZS1uLD9qyrCdnLecGYbqWWu2QiteKa6WpKhp_hBajDsIZI5wYxANIxUfsU0PRhfKYIa8BsehoihR7siMFSm-KIqafJ08E8RhjL3TphKZBfoQfEtO1EE5ML2eZP5KM3fYaDt7pPHm6uf11-m919_3p7-eVuZoWux5nULbSGt0oo3-jGeW7rpnWmcsBKjzcVF8YAN2Cst8qaxklQcya59l46JffJ6WbuEtPvFeSxG8rz0PcmQlrlTtSqUowrXhV68h9dpBXGsl1RmtWqrhte1NlGWUw5I_huiWEw-Nxx1r2G0F2J-x9_Q7go-Pht5Go-gNvSf79ewNEGYLbb7nuK8g8Q6Y1r</recordid><startdate>20230105</startdate><enddate>20230105</enddate><creator>Aldulaimi, W. A. S</creator><creator>Okatan, M. B</creator><creator>Sendur, K</creator><creator>Onbasli, M. C</creator><creator>Misirlioglu, I. B</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9421-7846</orcidid><orcidid>https://orcid.org/0000-0001-7709-9457</orcidid><orcidid>https://orcid.org/0000-0003-3210-7542</orcidid><orcidid>https://orcid.org/0000-0002-3554-7810</orcidid><orcidid>https://orcid.org/0000-0002-6054-0119</orcidid></search><sort><creationdate>20230105</creationdate><title>Size driven barrier to chirality reversal in electric control of magnetic vortices in ferromagnetic nanodiscs</title><author>Aldulaimi, W. A. S ; Okatan, M. B ; Sendur, K ; Onbasli, M. C ; Misirlioglu, I. B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c267t-369e9a19525f868df1c789da4de036918412aae1aeacfc5ca8d3e5b0316ff3d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Anisotropy</topic><topic>Aspect ratio</topic><topic>Chirality</topic><topic>Electric control</topic><topic>Electric fields</topic><topic>Electric pulses</topic><topic>Emission</topic><topic>Ferromagnetism</topic><topic>High density</topic><topic>Magnetic dipoles</topic><topic>Magnetic moments</topic><topic>Miniaturization</topic><topic>Vortices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aldulaimi, W. A. S</creatorcontrib><creatorcontrib>Okatan, M. B</creatorcontrib><creatorcontrib>Sendur, K</creatorcontrib><creatorcontrib>Onbasli, M. C</creatorcontrib><creatorcontrib>Misirlioglu, I. B</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aldulaimi, W. A. S</au><au>Okatan, M. B</au><au>Sendur, K</au><au>Onbasli, M. C</au><au>Misirlioglu, I. B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Size driven barrier to chirality reversal in electric control of magnetic vortices in ferromagnetic nanodiscs</atitle><jtitle>Nanoscale</jtitle><addtitle>Nanoscale</addtitle><date>2023-01-05</date><risdate>2023</risdate><volume>15</volume><issue>2</issue><spage>77</spage><epage>717</epage><pages>77-717</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>New high density storage media and spintronic devices come about with a progressing demand for the miniaturization of ferromagnetic structures. Vortex ordering of magnetic dipoles in such structures has been repeatedly observed as a stable state, offering the possibility of chirality in these states as a means to store information at high density. Electric pulses and magnetoelectric coupling are attractive options to control the chirality of such states in a deterministic manner. Here, we demonstrate the chirality reversal of vortex states in ferromagnetic nanodiscs
via
pulsed electric fields using a micromagnetic approach and focus on the analysis of the energetics of the reversal process. A strong thickness dependence of the chirality reversal in the nanodiscs is found that emanates from the anisotropy of the demagnetizing fields. Our results indicate that chiral switching of the magnetic moments in thin discs can give rise to a transient vortex-antivortex lattice not observed in thicker discs. This difference in the chirality reversal mechanism emanates from profoundly different energy barriers to overcome in thin and thicker discs. We also report the polarity-chirality correlation of a vortex that appears to depend on the aspect ratio of the nanodiscs.
We study the response of nanoscale ferromagnetic permalloy discs stabilized in vortex state to pulsed electric fields and analyze the energy barrier to the chirality reversal process using a micromagnetic simulation.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>36516064</pmid><doi>10.1039/d2nr02768b</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-9421-7846</orcidid><orcidid>https://orcid.org/0000-0001-7709-9457</orcidid><orcidid>https://orcid.org/0000-0003-3210-7542</orcidid><orcidid>https://orcid.org/0000-0002-3554-7810</orcidid><orcidid>https://orcid.org/0000-0002-6054-0119</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2040-3364 |
ispartof | Nanoscale, 2023-01, Vol.15 (2), p.77-717 |
issn | 2040-3364 2040-3372 |
language | eng |
recordid | cdi_proquest_miscellaneous_2754501514 |
source | Royal Society Of Chemistry Journals |
subjects | Anisotropy Aspect ratio Chirality Electric control Electric fields Electric pulses Emission Ferromagnetism High density Magnetic dipoles Magnetic moments Miniaturization Vortices |
title | Size driven barrier to chirality reversal in electric control of magnetic vortices in ferromagnetic nanodiscs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T10%3A58%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Size%20driven%20barrier%20to%20chirality%20reversal%20in%20electric%20control%20of%20magnetic%20vortices%20in%20ferromagnetic%20nanodiscs&rft.jtitle=Nanoscale&rft.au=Aldulaimi,%20W.%20A.%20S&rft.date=2023-01-05&rft.volume=15&rft.issue=2&rft.spage=77&rft.epage=717&rft.pages=77-717&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/d2nr02768b&rft_dat=%3Cproquest_cross%3E2754501514%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2760757781&rft_id=info:pmid/36516064&rfr_iscdi=true |