Observation of resonances in the transition state region of the F + NH3 reaction using anion photoelectron spectroscopy
The transition state of a chemical reaction is a dividing surface on the reaction potential energy surface (PES) between reactants and products and is thus of fundamental interest in understanding chemical reactivity. The transient nature of the transition state presents challenges to its experiment...
Gespeichert in:
Veröffentlicht in: | Nature chemistry 2023-02, Vol.15 (2), p.194-199 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 199 |
---|---|
container_issue | 2 |
container_start_page | 194 |
container_title | Nature chemistry |
container_volume | 15 |
creator | Babin, Mark C. DeWitt, Martin Lau, Jascha A. Weichman, Marissa L. Kim, Jongjin B. Song, Hongwei Guo, Hua Neumark, Daniel M. |
description | The transition state of a chemical reaction is a dividing surface on the reaction potential energy surface (PES) between reactants and products and is thus of fundamental interest in understanding chemical reactivity. The transient nature of the transition state presents challenges to its experimental characterization. Transition-state spectroscopy experiments based on negative-ion photodetachment can provide a direct probe of this region of the PES, revealing the detailed vibrational structure associated with the transition state. Here we study the F + NH
3
→ HF + NH
2
reaction using slow photoelectron velocity-map imaging spectroscopy of cryogenically cooled FNH
3
−
anions. Reduced-dimensionality quantum dynamical simulations performed on a global PES show excellent agreement with the experimental results, enabling the assignment of spectral structure. Our combined experimental–theoretical study reveals a manifold of vibrational Feshbach resonances in the product well of the F + NH
3
PES. At higher energies, the spectra identify features attributed to resonances localized across the transition state and into the reactant complex that may impact the bimolecular reaction dynamics.
The transition state, a transient species where bond transformation occurs, fundamentally controls reaction dynamics. This important species can be probed through the photodetachment of an anionic precursor, as has now been shown in the F + NH
3
reaction. A combination of theory and experiment reveals resonances that span the transition state. |
doi_str_mv | 10.1038/s41557-022-01100-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2754048916</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2754048916</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-69595e74f5aa96e3080d77576dc379f93ea227dccd9874a9aabb72ce8105ae443</originalsourceid><addsrcrecordid>eNp9kc1KAzEcxBdRsFZfwNOCF0FW87nZHKVYKxR70XNI0_-2W9pkTVKhePHqa_okZltR8OAhZGB-MyRMlp1jdI0RrW4Cw5yLAhFSIIwRKvBB1sOC84JRJg9_NEXH2UkIS4RKTnHZy94m0wD-VcfG2dzVuYfgrLYGQt7YPC4gj17b0Oz8EHWEhMy_4c4efr5_XKXzOKLJ0WYHbkJj57m2nW4XLjpYgYm-q2h3IhjXbk-zo1qvApx93_3seXj3NBgV48n9w-B2XBjKSSxKySUHwWqutSyBogrNhOCinBkqZC0paELEzJiZrATTUuvpVBADFUZcA2O0n13ue1vvXjYQolo3wcBqpS24TVBEcIZYJXGZ0Is_6NJtvE2vS5QgEiHBcKLInjLpJ8FDrVrfrLXfKoxUt4fa76HSHmq3h-pCdB8KCbZz8L_V_6S-AD2tkLo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2772900741</pqid></control><display><type>article</type><title>Observation of resonances in the transition state region of the F + NH3 reaction using anion photoelectron spectroscopy</title><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Babin, Mark C. ; DeWitt, Martin ; Lau, Jascha A. ; Weichman, Marissa L. ; Kim, Jongjin B. ; Song, Hongwei ; Guo, Hua ; Neumark, Daniel M.</creator><creatorcontrib>Babin, Mark C. ; DeWitt, Martin ; Lau, Jascha A. ; Weichman, Marissa L. ; Kim, Jongjin B. ; Song, Hongwei ; Guo, Hua ; Neumark, Daniel M.</creatorcontrib><description>The transition state of a chemical reaction is a dividing surface on the reaction potential energy surface (PES) between reactants and products and is thus of fundamental interest in understanding chemical reactivity. The transient nature of the transition state presents challenges to its experimental characterization. Transition-state spectroscopy experiments based on negative-ion photodetachment can provide a direct probe of this region of the PES, revealing the detailed vibrational structure associated with the transition state. Here we study the F + NH
3
→ HF + NH
2
reaction using slow photoelectron velocity-map imaging spectroscopy of cryogenically cooled FNH
3
−
anions. Reduced-dimensionality quantum dynamical simulations performed on a global PES show excellent agreement with the experimental results, enabling the assignment of spectral structure. Our combined experimental–theoretical study reveals a manifold of vibrational Feshbach resonances in the product well of the F + NH
3
PES. At higher energies, the spectra identify features attributed to resonances localized across the transition state and into the reactant complex that may impact the bimolecular reaction dynamics.
The transition state, a transient species where bond transformation occurs, fundamentally controls reaction dynamics. This important species can be probed through the photodetachment of an anionic precursor, as has now been shown in the F + NH
3
reaction. A combination of theory and experiment reveals resonances that span the transition state.</description><identifier>ISSN: 1755-4330</identifier><identifier>EISSN: 1755-4349</identifier><identifier>DOI: 10.1038/s41557-022-01100-1</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/638/440/94 ; 639/638/440/950 ; Ammonia ; Analytical Chemistry ; Anions ; Biochemistry ; Chemical reactions ; Chemistry ; Chemistry and Materials Science ; Chemistry/Food Science ; Inorganic Chemistry ; Organic Chemistry ; Photodetachment ; Photoelectron spectroscopy ; Photoelectrons ; Physical Chemistry ; Potential energy ; Spectroscopy ; Spectrum analysis</subject><ispartof>Nature chemistry, 2023-02, Vol.15 (2), p.194-199</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-69595e74f5aa96e3080d77576dc379f93ea227dccd9874a9aabb72ce8105ae443</citedby><cites>FETCH-LOGICAL-c352t-69595e74f5aa96e3080d77576dc379f93ea227dccd9874a9aabb72ce8105ae443</cites><orcidid>0000-0001-8401-2364 ; 0000-0002-2551-9146 ; 0000-0001-9901-053X ; 0000-0002-3762-9473 ; 0000-0001-7440-8058 ; 0000-0003-0068-373X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27928,27929</link.rule.ids></links><search><creatorcontrib>Babin, Mark C.</creatorcontrib><creatorcontrib>DeWitt, Martin</creatorcontrib><creatorcontrib>Lau, Jascha A.</creatorcontrib><creatorcontrib>Weichman, Marissa L.</creatorcontrib><creatorcontrib>Kim, Jongjin B.</creatorcontrib><creatorcontrib>Song, Hongwei</creatorcontrib><creatorcontrib>Guo, Hua</creatorcontrib><creatorcontrib>Neumark, Daniel M.</creatorcontrib><title>Observation of resonances in the transition state region of the F + NH3 reaction using anion photoelectron spectroscopy</title><title>Nature chemistry</title><addtitle>Nat. Chem</addtitle><description>The transition state of a chemical reaction is a dividing surface on the reaction potential energy surface (PES) between reactants and products and is thus of fundamental interest in understanding chemical reactivity. The transient nature of the transition state presents challenges to its experimental characterization. Transition-state spectroscopy experiments based on negative-ion photodetachment can provide a direct probe of this region of the PES, revealing the detailed vibrational structure associated with the transition state. Here we study the F + NH
3
→ HF + NH
2
reaction using slow photoelectron velocity-map imaging spectroscopy of cryogenically cooled FNH
3
−
anions. Reduced-dimensionality quantum dynamical simulations performed on a global PES show excellent agreement with the experimental results, enabling the assignment of spectral structure. Our combined experimental–theoretical study reveals a manifold of vibrational Feshbach resonances in the product well of the F + NH
3
PES. At higher energies, the spectra identify features attributed to resonances localized across the transition state and into the reactant complex that may impact the bimolecular reaction dynamics.
The transition state, a transient species where bond transformation occurs, fundamentally controls reaction dynamics. This important species can be probed through the photodetachment of an anionic precursor, as has now been shown in the F + NH
3
reaction. A combination of theory and experiment reveals resonances that span the transition state.</description><subject>639/638/440/94</subject><subject>639/638/440/950</subject><subject>Ammonia</subject><subject>Analytical Chemistry</subject><subject>Anions</subject><subject>Biochemistry</subject><subject>Chemical reactions</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chemistry/Food Science</subject><subject>Inorganic Chemistry</subject><subject>Organic Chemistry</subject><subject>Photodetachment</subject><subject>Photoelectron spectroscopy</subject><subject>Photoelectrons</subject><subject>Physical Chemistry</subject><subject>Potential energy</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><issn>1755-4330</issn><issn>1755-4349</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kc1KAzEcxBdRsFZfwNOCF0FW87nZHKVYKxR70XNI0_-2W9pkTVKhePHqa_okZltR8OAhZGB-MyRMlp1jdI0RrW4Cw5yLAhFSIIwRKvBB1sOC84JRJg9_NEXH2UkIS4RKTnHZy94m0wD-VcfG2dzVuYfgrLYGQt7YPC4gj17b0Oz8EHWEhMy_4c4efr5_XKXzOKLJ0WYHbkJj57m2nW4XLjpYgYm-q2h3IhjXbk-zo1qvApx93_3seXj3NBgV48n9w-B2XBjKSSxKySUHwWqutSyBogrNhOCinBkqZC0paELEzJiZrATTUuvpVBADFUZcA2O0n13ue1vvXjYQolo3wcBqpS24TVBEcIZYJXGZ0Is_6NJtvE2vS5QgEiHBcKLInjLpJ8FDrVrfrLXfKoxUt4fa76HSHmq3h-pCdB8KCbZz8L_V_6S-AD2tkLo</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Babin, Mark C.</creator><creator>DeWitt, Martin</creator><creator>Lau, Jascha A.</creator><creator>Weichman, Marissa L.</creator><creator>Kim, Jongjin B.</creator><creator>Song, Hongwei</creator><creator>Guo, Hua</creator><creator>Neumark, Daniel M.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8401-2364</orcidid><orcidid>https://orcid.org/0000-0002-2551-9146</orcidid><orcidid>https://orcid.org/0000-0001-9901-053X</orcidid><orcidid>https://orcid.org/0000-0002-3762-9473</orcidid><orcidid>https://orcid.org/0000-0001-7440-8058</orcidid><orcidid>https://orcid.org/0000-0003-0068-373X</orcidid></search><sort><creationdate>20230201</creationdate><title>Observation of resonances in the transition state region of the F + NH3 reaction using anion photoelectron spectroscopy</title><author>Babin, Mark C. ; DeWitt, Martin ; Lau, Jascha A. ; Weichman, Marissa L. ; Kim, Jongjin B. ; Song, Hongwei ; Guo, Hua ; Neumark, Daniel M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-69595e74f5aa96e3080d77576dc379f93ea227dccd9874a9aabb72ce8105ae443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>639/638/440/94</topic><topic>639/638/440/950</topic><topic>Ammonia</topic><topic>Analytical Chemistry</topic><topic>Anions</topic><topic>Biochemistry</topic><topic>Chemical reactions</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chemistry/Food Science</topic><topic>Inorganic Chemistry</topic><topic>Organic Chemistry</topic><topic>Photodetachment</topic><topic>Photoelectron spectroscopy</topic><topic>Photoelectrons</topic><topic>Physical Chemistry</topic><topic>Potential energy</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Babin, Mark C.</creatorcontrib><creatorcontrib>DeWitt, Martin</creatorcontrib><creatorcontrib>Lau, Jascha A.</creatorcontrib><creatorcontrib>Weichman, Marissa L.</creatorcontrib><creatorcontrib>Kim, Jongjin B.</creatorcontrib><creatorcontrib>Song, Hongwei</creatorcontrib><creatorcontrib>Guo, Hua</creatorcontrib><creatorcontrib>Neumark, Daniel M.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Chemoreception Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><jtitle>Nature chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Babin, Mark C.</au><au>DeWitt, Martin</au><au>Lau, Jascha A.</au><au>Weichman, Marissa L.</au><au>Kim, Jongjin B.</au><au>Song, Hongwei</au><au>Guo, Hua</au><au>Neumark, Daniel M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Observation of resonances in the transition state region of the F + NH3 reaction using anion photoelectron spectroscopy</atitle><jtitle>Nature chemistry</jtitle><stitle>Nat. Chem</stitle><date>2023-02-01</date><risdate>2023</risdate><volume>15</volume><issue>2</issue><spage>194</spage><epage>199</epage><pages>194-199</pages><issn>1755-4330</issn><eissn>1755-4349</eissn><abstract>The transition state of a chemical reaction is a dividing surface on the reaction potential energy surface (PES) between reactants and products and is thus of fundamental interest in understanding chemical reactivity. The transient nature of the transition state presents challenges to its experimental characterization. Transition-state spectroscopy experiments based on negative-ion photodetachment can provide a direct probe of this region of the PES, revealing the detailed vibrational structure associated with the transition state. Here we study the F + NH
3
→ HF + NH
2
reaction using slow photoelectron velocity-map imaging spectroscopy of cryogenically cooled FNH
3
−
anions. Reduced-dimensionality quantum dynamical simulations performed on a global PES show excellent agreement with the experimental results, enabling the assignment of spectral structure. Our combined experimental–theoretical study reveals a manifold of vibrational Feshbach resonances in the product well of the F + NH
3
PES. At higher energies, the spectra identify features attributed to resonances localized across the transition state and into the reactant complex that may impact the bimolecular reaction dynamics.
The transition state, a transient species where bond transformation occurs, fundamentally controls reaction dynamics. This important species can be probed through the photodetachment of an anionic precursor, as has now been shown in the F + NH
3
reaction. A combination of theory and experiment reveals resonances that span the transition state.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41557-022-01100-1</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-8401-2364</orcidid><orcidid>https://orcid.org/0000-0002-2551-9146</orcidid><orcidid>https://orcid.org/0000-0001-9901-053X</orcidid><orcidid>https://orcid.org/0000-0002-3762-9473</orcidid><orcidid>https://orcid.org/0000-0001-7440-8058</orcidid><orcidid>https://orcid.org/0000-0003-0068-373X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1755-4330 |
ispartof | Nature chemistry, 2023-02, Vol.15 (2), p.194-199 |
issn | 1755-4330 1755-4349 |
language | eng |
recordid | cdi_proquest_miscellaneous_2754048916 |
source | Nature; Alma/SFX Local Collection |
subjects | 639/638/440/94 639/638/440/950 Ammonia Analytical Chemistry Anions Biochemistry Chemical reactions Chemistry Chemistry and Materials Science Chemistry/Food Science Inorganic Chemistry Organic Chemistry Photodetachment Photoelectron spectroscopy Photoelectrons Physical Chemistry Potential energy Spectroscopy Spectrum analysis |
title | Observation of resonances in the transition state region of the F + NH3 reaction using anion photoelectron spectroscopy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T15%3A33%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Observation%20of%20resonances%20in%20the%20transition%20state%20region%20of%20the%20F%E2%80%89+%E2%80%89NH3%20reaction%20using%20anion%20photoelectron%20spectroscopy&rft.jtitle=Nature%20chemistry&rft.au=Babin,%20Mark%20C.&rft.date=2023-02-01&rft.volume=15&rft.issue=2&rft.spage=194&rft.epage=199&rft.pages=194-199&rft.issn=1755-4330&rft.eissn=1755-4349&rft_id=info:doi/10.1038/s41557-022-01100-1&rft_dat=%3Cproquest_cross%3E2754048916%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2772900741&rft_id=info:pmid/&rfr_iscdi=true |