Classification of Extracellular Vesicles Based on Surface Glycan Structures by Spongy-like Separation Media
Extracellular vesicles (EVs) are lipid bilayer vesicles that enclose various biomolecules. EVs hold promise as sensitive biomarkers to detect and monitor various diseases. However, they have heterogeneous molecular compositions. The compositions of EVs from identical donor cells obtained using the s...
Gespeichert in:
Veröffentlicht in: | Analytical chemistry (Washington) 2022-12, Vol.94 (51), p.18025-18033 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 18033 |
---|---|
container_issue | 51 |
container_start_page | 18025 |
container_title | Analytical chemistry (Washington) |
container_volume | 94 |
creator | Kanao, Eisuke Wada, Shuntaro Nishida, Hiroshi Kubo, Takuya Tanigawa, Tetsuya Imami, Koshi Shimoda, Asako Umezaki, Kaori Sasaki, Yoshihiro Akiyoshi, Kazunari Adachi, Jun Otsuka, Koji Ishihama, Yasushi |
description | Extracellular vesicles (EVs) are lipid bilayer vesicles that enclose various biomolecules. EVs hold promise as sensitive biomarkers to detect and monitor various diseases. However, they have heterogeneous molecular compositions. The compositions of EVs from identical donor cells obtained using the same purification methods may differ, which is a significant obstacle for elucidating objective biological functions. Herein, the potential of a novel lectin-based affinity chromatography (LAC) method to classify EVs based on their glycan structures is demonstrated. The proposed method utilizes a spongy-like monolithic polymer (spongy monolith, SPM), which consists of poly(ethylene-co-glycidyl methacrylate) with continuous micropores and allows an efficient in situ protein reaction with epoxy groups. Two distinct lectins with different specificities, Sambucus sieboldiana agglutinin and concanavalin A, are effectively immobilized on SPM without impacting the binding activity. Moreover, high recovery rates of liposomal nanoparticles as a model of EVs are achieved due to the large flow-through pores (>10 μm) of SPM compared to a typical agarose gel. Finally, lectin-immobilized SPMs are employed to classify EVs based on the surface glycan structures and demonstrate different subpopulations by proteome profiling. This is the first approach to clarify the variation of protein contents in EVs by the difference of surface glycans via lectin immobilized media. |
doi_str_mv | 10.1021/acs.analchem.2c04391 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2754046329</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2754046329</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4031-d21c64dec34974bbce51b1abf8752705473e6e82c9600e2ce549c6a6f34c1c243</originalsourceid><addsrcrecordid>eNp9kUtPwzAQhC0EouXxDxCKxIVLyvoRJzlCVR4SiEOBa7RxNpDiNsVOJPrvcWnhwIGTtdpvxtoZxk44jDgIfoHGj3CB1rzRfCQMKJnzHTbkiYBYZ5nYZUMAkLFIAQbswPsZAOfA9T4bSJ1wnqTpkL2PLXrf1I3BrmkXUVtHk8_OoSFre4sueiHfGEs-ukJPVRSQae_qsI9u7MpgGDvXm653ASlX0XTZLl5XsW3eKZrSEt3G9oGqBo_YXo3W0_H2PWTP15On8W18_3hzN768j1GB5HEluNGqIiNVnqqyNJTwkmNZZ2kSjklUKklTJkyuAUiEtcqNRl1LZbgRSh6y843v0rUfPfmumDd-fRAuqO19IdJEgdJS5AE9-4PO2t6FVL-pPA0piSxQakMZ13rvqC6WrpmjWxUcinUZRSij-Cmj2JYRZKdb876cU_Ur-kk_ALAB1vLfj__1_AKeA5jx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2759711528</pqid></control><display><type>article</type><title>Classification of Extracellular Vesicles Based on Surface Glycan Structures by Spongy-like Separation Media</title><source>MEDLINE</source><source>ACS Publications</source><creator>Kanao, Eisuke ; Wada, Shuntaro ; Nishida, Hiroshi ; Kubo, Takuya ; Tanigawa, Tetsuya ; Imami, Koshi ; Shimoda, Asako ; Umezaki, Kaori ; Sasaki, Yoshihiro ; Akiyoshi, Kazunari ; Adachi, Jun ; Otsuka, Koji ; Ishihama, Yasushi</creator><creatorcontrib>Kanao, Eisuke ; Wada, Shuntaro ; Nishida, Hiroshi ; Kubo, Takuya ; Tanigawa, Tetsuya ; Imami, Koshi ; Shimoda, Asako ; Umezaki, Kaori ; Sasaki, Yoshihiro ; Akiyoshi, Kazunari ; Adachi, Jun ; Otsuka, Koji ; Ishihama, Yasushi</creatorcontrib><description>Extracellular vesicles (EVs) are lipid bilayer vesicles that enclose various biomolecules. EVs hold promise as sensitive biomarkers to detect and monitor various diseases. However, they have heterogeneous molecular compositions. The compositions of EVs from identical donor cells obtained using the same purification methods may differ, which is a significant obstacle for elucidating objective biological functions. Herein, the potential of a novel lectin-based affinity chromatography (LAC) method to classify EVs based on their glycan structures is demonstrated. The proposed method utilizes a spongy-like monolithic polymer (spongy monolith, SPM), which consists of poly(ethylene-co-glycidyl methacrylate) with continuous micropores and allows an efficient in situ protein reaction with epoxy groups. Two distinct lectins with different specificities, Sambucus sieboldiana agglutinin and concanavalin A, are effectively immobilized on SPM without impacting the binding activity. Moreover, high recovery rates of liposomal nanoparticles as a model of EVs are achieved due to the large flow-through pores (>10 μm) of SPM compared to a typical agarose gel. Finally, lectin-immobilized SPMs are employed to classify EVs based on the surface glycan structures and demonstrate different subpopulations by proteome profiling. This is the first approach to clarify the variation of protein contents in EVs by the difference of surface glycans via lectin immobilized media.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.2c04391</identifier><identifier>PMID: 36511577</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Affinity chromatography ; Analytical chemistry ; Biomarkers ; Biomolecules ; Chemical composition ; Chemistry ; Chromatography, Affinity - methods ; Classification ; Concanavalin A ; Concanavalin A - chemistry ; Extracellular vesicles ; Extracellular Vesicles - metabolism ; Glycan ; Lectins ; Lectins - metabolism ; Lipid bilayers ; Lipids ; Nanoparticles ; Polymers ; Polysaccharides ; Polysaccharides - metabolism ; Proteins ; Proteomes ; Subpopulations ; Vesicles</subject><ispartof>Analytical chemistry (Washington), 2022-12, Vol.94 (51), p.18025-18033</ispartof><rights>2022 American Chemical Society</rights><rights>Copyright American Chemical Society Dec 27, 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4031-d21c64dec34974bbce51b1abf8752705473e6e82c9600e2ce549c6a6f34c1c243</citedby><cites>FETCH-LOGICAL-a4031-d21c64dec34974bbce51b1abf8752705473e6e82c9600e2ce549c6a6f34c1c243</cites><orcidid>0000-0003-1088-0569 ; 0000-0002-7451-4982 ; 0000-0003-1333-5347 ; 0000-0002-9274-3295 ; 0000-0003-1220-3246</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.analchem.2c04391$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.analchem.2c04391$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36511577$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kanao, Eisuke</creatorcontrib><creatorcontrib>Wada, Shuntaro</creatorcontrib><creatorcontrib>Nishida, Hiroshi</creatorcontrib><creatorcontrib>Kubo, Takuya</creatorcontrib><creatorcontrib>Tanigawa, Tetsuya</creatorcontrib><creatorcontrib>Imami, Koshi</creatorcontrib><creatorcontrib>Shimoda, Asako</creatorcontrib><creatorcontrib>Umezaki, Kaori</creatorcontrib><creatorcontrib>Sasaki, Yoshihiro</creatorcontrib><creatorcontrib>Akiyoshi, Kazunari</creatorcontrib><creatorcontrib>Adachi, Jun</creatorcontrib><creatorcontrib>Otsuka, Koji</creatorcontrib><creatorcontrib>Ishihama, Yasushi</creatorcontrib><title>Classification of Extracellular Vesicles Based on Surface Glycan Structures by Spongy-like Separation Media</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>Extracellular vesicles (EVs) are lipid bilayer vesicles that enclose various biomolecules. EVs hold promise as sensitive biomarkers to detect and monitor various diseases. However, they have heterogeneous molecular compositions. The compositions of EVs from identical donor cells obtained using the same purification methods may differ, which is a significant obstacle for elucidating objective biological functions. Herein, the potential of a novel lectin-based affinity chromatography (LAC) method to classify EVs based on their glycan structures is demonstrated. The proposed method utilizes a spongy-like monolithic polymer (spongy monolith, SPM), which consists of poly(ethylene-co-glycidyl methacrylate) with continuous micropores and allows an efficient in situ protein reaction with epoxy groups. Two distinct lectins with different specificities, Sambucus sieboldiana agglutinin and concanavalin A, are effectively immobilized on SPM without impacting the binding activity. Moreover, high recovery rates of liposomal nanoparticles as a model of EVs are achieved due to the large flow-through pores (>10 μm) of SPM compared to a typical agarose gel. Finally, lectin-immobilized SPMs are employed to classify EVs based on the surface glycan structures and demonstrate different subpopulations by proteome profiling. This is the first approach to clarify the variation of protein contents in EVs by the difference of surface glycans via lectin immobilized media.</description><subject>Affinity chromatography</subject><subject>Analytical chemistry</subject><subject>Biomarkers</subject><subject>Biomolecules</subject><subject>Chemical composition</subject><subject>Chemistry</subject><subject>Chromatography, Affinity - methods</subject><subject>Classification</subject><subject>Concanavalin A</subject><subject>Concanavalin A - chemistry</subject><subject>Extracellular vesicles</subject><subject>Extracellular Vesicles - metabolism</subject><subject>Glycan</subject><subject>Lectins</subject><subject>Lectins - metabolism</subject><subject>Lipid bilayers</subject><subject>Lipids</subject><subject>Nanoparticles</subject><subject>Polymers</subject><subject>Polysaccharides</subject><subject>Polysaccharides - metabolism</subject><subject>Proteins</subject><subject>Proteomes</subject><subject>Subpopulations</subject><subject>Vesicles</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kUtPwzAQhC0EouXxDxCKxIVLyvoRJzlCVR4SiEOBa7RxNpDiNsVOJPrvcWnhwIGTtdpvxtoZxk44jDgIfoHGj3CB1rzRfCQMKJnzHTbkiYBYZ5nYZUMAkLFIAQbswPsZAOfA9T4bSJ1wnqTpkL2PLXrf1I3BrmkXUVtHk8_OoSFre4sueiHfGEs-ukJPVRSQae_qsI9u7MpgGDvXm653ASlX0XTZLl5XsW3eKZrSEt3G9oGqBo_YXo3W0_H2PWTP15On8W18_3hzN768j1GB5HEluNGqIiNVnqqyNJTwkmNZZ2kSjklUKklTJkyuAUiEtcqNRl1LZbgRSh6y843v0rUfPfmumDd-fRAuqO19IdJEgdJS5AE9-4PO2t6FVL-pPA0piSxQakMZ13rvqC6WrpmjWxUcinUZRSij-Cmj2JYRZKdb876cU_Ur-kk_ALAB1vLfj__1_AKeA5jx</recordid><startdate>20221227</startdate><enddate>20221227</enddate><creator>Kanao, Eisuke</creator><creator>Wada, Shuntaro</creator><creator>Nishida, Hiroshi</creator><creator>Kubo, Takuya</creator><creator>Tanigawa, Tetsuya</creator><creator>Imami, Koshi</creator><creator>Shimoda, Asako</creator><creator>Umezaki, Kaori</creator><creator>Sasaki, Yoshihiro</creator><creator>Akiyoshi, Kazunari</creator><creator>Adachi, Jun</creator><creator>Otsuka, Koji</creator><creator>Ishihama, Yasushi</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1088-0569</orcidid><orcidid>https://orcid.org/0000-0002-7451-4982</orcidid><orcidid>https://orcid.org/0000-0003-1333-5347</orcidid><orcidid>https://orcid.org/0000-0002-9274-3295</orcidid><orcidid>https://orcid.org/0000-0003-1220-3246</orcidid></search><sort><creationdate>20221227</creationdate><title>Classification of Extracellular Vesicles Based on Surface Glycan Structures by Spongy-like Separation Media</title><author>Kanao, Eisuke ; Wada, Shuntaro ; Nishida, Hiroshi ; Kubo, Takuya ; Tanigawa, Tetsuya ; Imami, Koshi ; Shimoda, Asako ; Umezaki, Kaori ; Sasaki, Yoshihiro ; Akiyoshi, Kazunari ; Adachi, Jun ; Otsuka, Koji ; Ishihama, Yasushi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4031-d21c64dec34974bbce51b1abf8752705473e6e82c9600e2ce549c6a6f34c1c243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Affinity chromatography</topic><topic>Analytical chemistry</topic><topic>Biomarkers</topic><topic>Biomolecules</topic><topic>Chemical composition</topic><topic>Chemistry</topic><topic>Chromatography, Affinity - methods</topic><topic>Classification</topic><topic>Concanavalin A</topic><topic>Concanavalin A - chemistry</topic><topic>Extracellular vesicles</topic><topic>Extracellular Vesicles - metabolism</topic><topic>Glycan</topic><topic>Lectins</topic><topic>Lectins - metabolism</topic><topic>Lipid bilayers</topic><topic>Lipids</topic><topic>Nanoparticles</topic><topic>Polymers</topic><topic>Polysaccharides</topic><topic>Polysaccharides - metabolism</topic><topic>Proteins</topic><topic>Proteomes</topic><topic>Subpopulations</topic><topic>Vesicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kanao, Eisuke</creatorcontrib><creatorcontrib>Wada, Shuntaro</creatorcontrib><creatorcontrib>Nishida, Hiroshi</creatorcontrib><creatorcontrib>Kubo, Takuya</creatorcontrib><creatorcontrib>Tanigawa, Tetsuya</creatorcontrib><creatorcontrib>Imami, Koshi</creatorcontrib><creatorcontrib>Shimoda, Asako</creatorcontrib><creatorcontrib>Umezaki, Kaori</creatorcontrib><creatorcontrib>Sasaki, Yoshihiro</creatorcontrib><creatorcontrib>Akiyoshi, Kazunari</creatorcontrib><creatorcontrib>Adachi, Jun</creatorcontrib><creatorcontrib>Otsuka, Koji</creatorcontrib><creatorcontrib>Ishihama, Yasushi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kanao, Eisuke</au><au>Wada, Shuntaro</au><au>Nishida, Hiroshi</au><au>Kubo, Takuya</au><au>Tanigawa, Tetsuya</au><au>Imami, Koshi</au><au>Shimoda, Asako</au><au>Umezaki, Kaori</au><au>Sasaki, Yoshihiro</au><au>Akiyoshi, Kazunari</au><au>Adachi, Jun</au><au>Otsuka, Koji</au><au>Ishihama, Yasushi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Classification of Extracellular Vesicles Based on Surface Glycan Structures by Spongy-like Separation Media</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2022-12-27</date><risdate>2022</risdate><volume>94</volume><issue>51</issue><spage>18025</spage><epage>18033</epage><pages>18025-18033</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><abstract>Extracellular vesicles (EVs) are lipid bilayer vesicles that enclose various biomolecules. EVs hold promise as sensitive biomarkers to detect and monitor various diseases. However, they have heterogeneous molecular compositions. The compositions of EVs from identical donor cells obtained using the same purification methods may differ, which is a significant obstacle for elucidating objective biological functions. Herein, the potential of a novel lectin-based affinity chromatography (LAC) method to classify EVs based on their glycan structures is demonstrated. The proposed method utilizes a spongy-like monolithic polymer (spongy monolith, SPM), which consists of poly(ethylene-co-glycidyl methacrylate) with continuous micropores and allows an efficient in situ protein reaction with epoxy groups. Two distinct lectins with different specificities, Sambucus sieboldiana agglutinin and concanavalin A, are effectively immobilized on SPM without impacting the binding activity. Moreover, high recovery rates of liposomal nanoparticles as a model of EVs are achieved due to the large flow-through pores (>10 μm) of SPM compared to a typical agarose gel. Finally, lectin-immobilized SPMs are employed to classify EVs based on the surface glycan structures and demonstrate different subpopulations by proteome profiling. This is the first approach to clarify the variation of protein contents in EVs by the difference of surface glycans via lectin immobilized media.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>36511577</pmid><doi>10.1021/acs.analchem.2c04391</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-1088-0569</orcidid><orcidid>https://orcid.org/0000-0002-7451-4982</orcidid><orcidid>https://orcid.org/0000-0003-1333-5347</orcidid><orcidid>https://orcid.org/0000-0002-9274-3295</orcidid><orcidid>https://orcid.org/0000-0003-1220-3246</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-2700 |
ispartof | Analytical chemistry (Washington), 2022-12, Vol.94 (51), p.18025-18033 |
issn | 0003-2700 1520-6882 |
language | eng |
recordid | cdi_proquest_miscellaneous_2754046329 |
source | MEDLINE; ACS Publications |
subjects | Affinity chromatography Analytical chemistry Biomarkers Biomolecules Chemical composition Chemistry Chromatography, Affinity - methods Classification Concanavalin A Concanavalin A - chemistry Extracellular vesicles Extracellular Vesicles - metabolism Glycan Lectins Lectins - metabolism Lipid bilayers Lipids Nanoparticles Polymers Polysaccharides Polysaccharides - metabolism Proteins Proteomes Subpopulations Vesicles |
title | Classification of Extracellular Vesicles Based on Surface Glycan Structures by Spongy-like Separation Media |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T01%3A08%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Classification%20of%20Extracellular%20Vesicles%20Based%20on%20Surface%20Glycan%20Structures%20by%20Spongy-like%20Separation%20Media&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Kanao,%20Eisuke&rft.date=2022-12-27&rft.volume=94&rft.issue=51&rft.spage=18025&rft.epage=18033&rft.pages=18025-18033&rft.issn=0003-2700&rft.eissn=1520-6882&rft_id=info:doi/10.1021/acs.analchem.2c04391&rft_dat=%3Cproquest_cross%3E2754046329%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2759711528&rft_id=info:pmid/36511577&rfr_iscdi=true |