Classification of Extracellular Vesicles Based on Surface Glycan Structures by Spongy-like Separation Media

Extracellular vesicles (EVs) are lipid bilayer vesicles that enclose various biomolecules. EVs hold promise as sensitive biomarkers to detect and monitor various diseases. However, they have heterogeneous molecular compositions. The compositions of EVs from identical donor cells obtained using the s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2022-12, Vol.94 (51), p.18025-18033
Hauptverfasser: Kanao, Eisuke, Wada, Shuntaro, Nishida, Hiroshi, Kubo, Takuya, Tanigawa, Tetsuya, Imami, Koshi, Shimoda, Asako, Umezaki, Kaori, Sasaki, Yoshihiro, Akiyoshi, Kazunari, Adachi, Jun, Otsuka, Koji, Ishihama, Yasushi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 18033
container_issue 51
container_start_page 18025
container_title Analytical chemistry (Washington)
container_volume 94
creator Kanao, Eisuke
Wada, Shuntaro
Nishida, Hiroshi
Kubo, Takuya
Tanigawa, Tetsuya
Imami, Koshi
Shimoda, Asako
Umezaki, Kaori
Sasaki, Yoshihiro
Akiyoshi, Kazunari
Adachi, Jun
Otsuka, Koji
Ishihama, Yasushi
description Extracellular vesicles (EVs) are lipid bilayer vesicles that enclose various biomolecules. EVs hold promise as sensitive biomarkers to detect and monitor various diseases. However, they have heterogeneous molecular compositions. The compositions of EVs from identical donor cells obtained using the same purification methods may differ, which is a significant obstacle for elucidating objective biological functions. Herein, the potential of a novel lectin-based affinity chromatography (LAC) method to classify EVs based on their glycan structures is demonstrated. The proposed method utilizes a spongy-like monolithic polymer (spongy monolith, SPM), which consists of poly­(ethylene-co-glycidyl methacrylate) with continuous micropores and allows an efficient in situ protein reaction with epoxy groups. Two distinct lectins with different specificities, Sambucus sieboldiana agglutinin and concanavalin A, are effectively immobilized on SPM without impacting the binding activity. Moreover, high recovery rates of liposomal nanoparticles as a model of EVs are achieved due to the large flow-through pores (>10 μm) of SPM compared to a typical agarose gel. Finally, lectin-immobilized SPMs are employed to classify EVs based on the surface glycan structures and demonstrate different subpopulations by proteome profiling. This is the first approach to clarify the variation of protein contents in EVs by the difference of surface glycans via lectin immobilized media.
doi_str_mv 10.1021/acs.analchem.2c04391
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2754046329</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2754046329</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4031-d21c64dec34974bbce51b1abf8752705473e6e82c9600e2ce549c6a6f34c1c243</originalsourceid><addsrcrecordid>eNp9kUtPwzAQhC0EouXxDxCKxIVLyvoRJzlCVR4SiEOBa7RxNpDiNsVOJPrvcWnhwIGTtdpvxtoZxk44jDgIfoHGj3CB1rzRfCQMKJnzHTbkiYBYZ5nYZUMAkLFIAQbswPsZAOfA9T4bSJ1wnqTpkL2PLXrf1I3BrmkXUVtHk8_OoSFre4sueiHfGEs-ukJPVRSQae_qsI9u7MpgGDvXm653ASlX0XTZLl5XsW3eKZrSEt3G9oGqBo_YXo3W0_H2PWTP15On8W18_3hzN768j1GB5HEluNGqIiNVnqqyNJTwkmNZZ2kSjklUKklTJkyuAUiEtcqNRl1LZbgRSh6y843v0rUfPfmumDd-fRAuqO19IdJEgdJS5AE9-4PO2t6FVL-pPA0piSxQakMZ13rvqC6WrpmjWxUcinUZRSij-Cmj2JYRZKdb876cU_Ur-kk_ALAB1vLfj__1_AKeA5jx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2759711528</pqid></control><display><type>article</type><title>Classification of Extracellular Vesicles Based on Surface Glycan Structures by Spongy-like Separation Media</title><source>MEDLINE</source><source>ACS Publications</source><creator>Kanao, Eisuke ; Wada, Shuntaro ; Nishida, Hiroshi ; Kubo, Takuya ; Tanigawa, Tetsuya ; Imami, Koshi ; Shimoda, Asako ; Umezaki, Kaori ; Sasaki, Yoshihiro ; Akiyoshi, Kazunari ; Adachi, Jun ; Otsuka, Koji ; Ishihama, Yasushi</creator><creatorcontrib>Kanao, Eisuke ; Wada, Shuntaro ; Nishida, Hiroshi ; Kubo, Takuya ; Tanigawa, Tetsuya ; Imami, Koshi ; Shimoda, Asako ; Umezaki, Kaori ; Sasaki, Yoshihiro ; Akiyoshi, Kazunari ; Adachi, Jun ; Otsuka, Koji ; Ishihama, Yasushi</creatorcontrib><description>Extracellular vesicles (EVs) are lipid bilayer vesicles that enclose various biomolecules. EVs hold promise as sensitive biomarkers to detect and monitor various diseases. However, they have heterogeneous molecular compositions. The compositions of EVs from identical donor cells obtained using the same purification methods may differ, which is a significant obstacle for elucidating objective biological functions. Herein, the potential of a novel lectin-based affinity chromatography (LAC) method to classify EVs based on their glycan structures is demonstrated. The proposed method utilizes a spongy-like monolithic polymer (spongy monolith, SPM), which consists of poly­(ethylene-co-glycidyl methacrylate) with continuous micropores and allows an efficient in situ protein reaction with epoxy groups. Two distinct lectins with different specificities, Sambucus sieboldiana agglutinin and concanavalin A, are effectively immobilized on SPM without impacting the binding activity. Moreover, high recovery rates of liposomal nanoparticles as a model of EVs are achieved due to the large flow-through pores (&gt;10 μm) of SPM compared to a typical agarose gel. Finally, lectin-immobilized SPMs are employed to classify EVs based on the surface glycan structures and demonstrate different subpopulations by proteome profiling. This is the first approach to clarify the variation of protein contents in EVs by the difference of surface glycans via lectin immobilized media.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.2c04391</identifier><identifier>PMID: 36511577</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Affinity chromatography ; Analytical chemistry ; Biomarkers ; Biomolecules ; Chemical composition ; Chemistry ; Chromatography, Affinity - methods ; Classification ; Concanavalin A ; Concanavalin A - chemistry ; Extracellular vesicles ; Extracellular Vesicles - metabolism ; Glycan ; Lectins ; Lectins - metabolism ; Lipid bilayers ; Lipids ; Nanoparticles ; Polymers ; Polysaccharides ; Polysaccharides - metabolism ; Proteins ; Proteomes ; Subpopulations ; Vesicles</subject><ispartof>Analytical chemistry (Washington), 2022-12, Vol.94 (51), p.18025-18033</ispartof><rights>2022 American Chemical Society</rights><rights>Copyright American Chemical Society Dec 27, 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4031-d21c64dec34974bbce51b1abf8752705473e6e82c9600e2ce549c6a6f34c1c243</citedby><cites>FETCH-LOGICAL-a4031-d21c64dec34974bbce51b1abf8752705473e6e82c9600e2ce549c6a6f34c1c243</cites><orcidid>0000-0003-1088-0569 ; 0000-0002-7451-4982 ; 0000-0003-1333-5347 ; 0000-0002-9274-3295 ; 0000-0003-1220-3246</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.analchem.2c04391$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.analchem.2c04391$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36511577$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kanao, Eisuke</creatorcontrib><creatorcontrib>Wada, Shuntaro</creatorcontrib><creatorcontrib>Nishida, Hiroshi</creatorcontrib><creatorcontrib>Kubo, Takuya</creatorcontrib><creatorcontrib>Tanigawa, Tetsuya</creatorcontrib><creatorcontrib>Imami, Koshi</creatorcontrib><creatorcontrib>Shimoda, Asako</creatorcontrib><creatorcontrib>Umezaki, Kaori</creatorcontrib><creatorcontrib>Sasaki, Yoshihiro</creatorcontrib><creatorcontrib>Akiyoshi, Kazunari</creatorcontrib><creatorcontrib>Adachi, Jun</creatorcontrib><creatorcontrib>Otsuka, Koji</creatorcontrib><creatorcontrib>Ishihama, Yasushi</creatorcontrib><title>Classification of Extracellular Vesicles Based on Surface Glycan Structures by Spongy-like Separation Media</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>Extracellular vesicles (EVs) are lipid bilayer vesicles that enclose various biomolecules. EVs hold promise as sensitive biomarkers to detect and monitor various diseases. However, they have heterogeneous molecular compositions. The compositions of EVs from identical donor cells obtained using the same purification methods may differ, which is a significant obstacle for elucidating objective biological functions. Herein, the potential of a novel lectin-based affinity chromatography (LAC) method to classify EVs based on their glycan structures is demonstrated. The proposed method utilizes a spongy-like monolithic polymer (spongy monolith, SPM), which consists of poly­(ethylene-co-glycidyl methacrylate) with continuous micropores and allows an efficient in situ protein reaction with epoxy groups. Two distinct lectins with different specificities, Sambucus sieboldiana agglutinin and concanavalin A, are effectively immobilized on SPM without impacting the binding activity. Moreover, high recovery rates of liposomal nanoparticles as a model of EVs are achieved due to the large flow-through pores (&gt;10 μm) of SPM compared to a typical agarose gel. Finally, lectin-immobilized SPMs are employed to classify EVs based on the surface glycan structures and demonstrate different subpopulations by proteome profiling. This is the first approach to clarify the variation of protein contents in EVs by the difference of surface glycans via lectin immobilized media.</description><subject>Affinity chromatography</subject><subject>Analytical chemistry</subject><subject>Biomarkers</subject><subject>Biomolecules</subject><subject>Chemical composition</subject><subject>Chemistry</subject><subject>Chromatography, Affinity - methods</subject><subject>Classification</subject><subject>Concanavalin A</subject><subject>Concanavalin A - chemistry</subject><subject>Extracellular vesicles</subject><subject>Extracellular Vesicles - metabolism</subject><subject>Glycan</subject><subject>Lectins</subject><subject>Lectins - metabolism</subject><subject>Lipid bilayers</subject><subject>Lipids</subject><subject>Nanoparticles</subject><subject>Polymers</subject><subject>Polysaccharides</subject><subject>Polysaccharides - metabolism</subject><subject>Proteins</subject><subject>Proteomes</subject><subject>Subpopulations</subject><subject>Vesicles</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kUtPwzAQhC0EouXxDxCKxIVLyvoRJzlCVR4SiEOBa7RxNpDiNsVOJPrvcWnhwIGTtdpvxtoZxk44jDgIfoHGj3CB1rzRfCQMKJnzHTbkiYBYZ5nYZUMAkLFIAQbswPsZAOfA9T4bSJ1wnqTpkL2PLXrf1I3BrmkXUVtHk8_OoSFre4sueiHfGEs-ukJPVRSQae_qsI9u7MpgGDvXm653ASlX0XTZLl5XsW3eKZrSEt3G9oGqBo_YXo3W0_H2PWTP15On8W18_3hzN768j1GB5HEluNGqIiNVnqqyNJTwkmNZZ2kSjklUKklTJkyuAUiEtcqNRl1LZbgRSh6y843v0rUfPfmumDd-fRAuqO19IdJEgdJS5AE9-4PO2t6FVL-pPA0piSxQakMZ13rvqC6WrpmjWxUcinUZRSij-Cmj2JYRZKdb876cU_Ur-kk_ALAB1vLfj__1_AKeA5jx</recordid><startdate>20221227</startdate><enddate>20221227</enddate><creator>Kanao, Eisuke</creator><creator>Wada, Shuntaro</creator><creator>Nishida, Hiroshi</creator><creator>Kubo, Takuya</creator><creator>Tanigawa, Tetsuya</creator><creator>Imami, Koshi</creator><creator>Shimoda, Asako</creator><creator>Umezaki, Kaori</creator><creator>Sasaki, Yoshihiro</creator><creator>Akiyoshi, Kazunari</creator><creator>Adachi, Jun</creator><creator>Otsuka, Koji</creator><creator>Ishihama, Yasushi</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1088-0569</orcidid><orcidid>https://orcid.org/0000-0002-7451-4982</orcidid><orcidid>https://orcid.org/0000-0003-1333-5347</orcidid><orcidid>https://orcid.org/0000-0002-9274-3295</orcidid><orcidid>https://orcid.org/0000-0003-1220-3246</orcidid></search><sort><creationdate>20221227</creationdate><title>Classification of Extracellular Vesicles Based on Surface Glycan Structures by Spongy-like Separation Media</title><author>Kanao, Eisuke ; Wada, Shuntaro ; Nishida, Hiroshi ; Kubo, Takuya ; Tanigawa, Tetsuya ; Imami, Koshi ; Shimoda, Asako ; Umezaki, Kaori ; Sasaki, Yoshihiro ; Akiyoshi, Kazunari ; Adachi, Jun ; Otsuka, Koji ; Ishihama, Yasushi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4031-d21c64dec34974bbce51b1abf8752705473e6e82c9600e2ce549c6a6f34c1c243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Affinity chromatography</topic><topic>Analytical chemistry</topic><topic>Biomarkers</topic><topic>Biomolecules</topic><topic>Chemical composition</topic><topic>Chemistry</topic><topic>Chromatography, Affinity - methods</topic><topic>Classification</topic><topic>Concanavalin A</topic><topic>Concanavalin A - chemistry</topic><topic>Extracellular vesicles</topic><topic>Extracellular Vesicles - metabolism</topic><topic>Glycan</topic><topic>Lectins</topic><topic>Lectins - metabolism</topic><topic>Lipid bilayers</topic><topic>Lipids</topic><topic>Nanoparticles</topic><topic>Polymers</topic><topic>Polysaccharides</topic><topic>Polysaccharides - metabolism</topic><topic>Proteins</topic><topic>Proteomes</topic><topic>Subpopulations</topic><topic>Vesicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kanao, Eisuke</creatorcontrib><creatorcontrib>Wada, Shuntaro</creatorcontrib><creatorcontrib>Nishida, Hiroshi</creatorcontrib><creatorcontrib>Kubo, Takuya</creatorcontrib><creatorcontrib>Tanigawa, Tetsuya</creatorcontrib><creatorcontrib>Imami, Koshi</creatorcontrib><creatorcontrib>Shimoda, Asako</creatorcontrib><creatorcontrib>Umezaki, Kaori</creatorcontrib><creatorcontrib>Sasaki, Yoshihiro</creatorcontrib><creatorcontrib>Akiyoshi, Kazunari</creatorcontrib><creatorcontrib>Adachi, Jun</creatorcontrib><creatorcontrib>Otsuka, Koji</creatorcontrib><creatorcontrib>Ishihama, Yasushi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kanao, Eisuke</au><au>Wada, Shuntaro</au><au>Nishida, Hiroshi</au><au>Kubo, Takuya</au><au>Tanigawa, Tetsuya</au><au>Imami, Koshi</au><au>Shimoda, Asako</au><au>Umezaki, Kaori</au><au>Sasaki, Yoshihiro</au><au>Akiyoshi, Kazunari</au><au>Adachi, Jun</au><au>Otsuka, Koji</au><au>Ishihama, Yasushi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Classification of Extracellular Vesicles Based on Surface Glycan Structures by Spongy-like Separation Media</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2022-12-27</date><risdate>2022</risdate><volume>94</volume><issue>51</issue><spage>18025</spage><epage>18033</epage><pages>18025-18033</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><abstract>Extracellular vesicles (EVs) are lipid bilayer vesicles that enclose various biomolecules. EVs hold promise as sensitive biomarkers to detect and monitor various diseases. However, they have heterogeneous molecular compositions. The compositions of EVs from identical donor cells obtained using the same purification methods may differ, which is a significant obstacle for elucidating objective biological functions. Herein, the potential of a novel lectin-based affinity chromatography (LAC) method to classify EVs based on their glycan structures is demonstrated. The proposed method utilizes a spongy-like monolithic polymer (spongy monolith, SPM), which consists of poly­(ethylene-co-glycidyl methacrylate) with continuous micropores and allows an efficient in situ protein reaction with epoxy groups. Two distinct lectins with different specificities, Sambucus sieboldiana agglutinin and concanavalin A, are effectively immobilized on SPM without impacting the binding activity. Moreover, high recovery rates of liposomal nanoparticles as a model of EVs are achieved due to the large flow-through pores (&gt;10 μm) of SPM compared to a typical agarose gel. Finally, lectin-immobilized SPMs are employed to classify EVs based on the surface glycan structures and demonstrate different subpopulations by proteome profiling. This is the first approach to clarify the variation of protein contents in EVs by the difference of surface glycans via lectin immobilized media.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>36511577</pmid><doi>10.1021/acs.analchem.2c04391</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-1088-0569</orcidid><orcidid>https://orcid.org/0000-0002-7451-4982</orcidid><orcidid>https://orcid.org/0000-0003-1333-5347</orcidid><orcidid>https://orcid.org/0000-0002-9274-3295</orcidid><orcidid>https://orcid.org/0000-0003-1220-3246</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 2022-12, Vol.94 (51), p.18025-18033
issn 0003-2700
1520-6882
language eng
recordid cdi_proquest_miscellaneous_2754046329
source MEDLINE; ACS Publications
subjects Affinity chromatography
Analytical chemistry
Biomarkers
Biomolecules
Chemical composition
Chemistry
Chromatography, Affinity - methods
Classification
Concanavalin A
Concanavalin A - chemistry
Extracellular vesicles
Extracellular Vesicles - metabolism
Glycan
Lectins
Lectins - metabolism
Lipid bilayers
Lipids
Nanoparticles
Polymers
Polysaccharides
Polysaccharides - metabolism
Proteins
Proteomes
Subpopulations
Vesicles
title Classification of Extracellular Vesicles Based on Surface Glycan Structures by Spongy-like Separation Media
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T01%3A08%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Classification%20of%20Extracellular%20Vesicles%20Based%20on%20Surface%20Glycan%20Structures%20by%20Spongy-like%20Separation%20Media&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Kanao,%20Eisuke&rft.date=2022-12-27&rft.volume=94&rft.issue=51&rft.spage=18025&rft.epage=18033&rft.pages=18025-18033&rft.issn=0003-2700&rft.eissn=1520-6882&rft_id=info:doi/10.1021/acs.analchem.2c04391&rft_dat=%3Cproquest_cross%3E2754046329%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2759711528&rft_id=info:pmid/36511577&rfr_iscdi=true