Foresight-based pricing algorithms in agent economies

We propose several heuristic approaches to the development of pricing algorithms for software agents that incorporate foresight, i.e., an ability to model and predict responses by competitors. In the absence of foresight, prior work has shown that, in an economy of myopic software agents, undesirabl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Decision Support Systems 2000-03, Vol.28 (1), p.49-60
Hauptverfasser: Tesauro, Gerald J., Kephart, Jeffrey O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 60
container_issue 1
container_start_page 49
container_title Decision Support Systems
container_volume 28
creator Tesauro, Gerald J.
Kephart, Jeffrey O.
description We propose several heuristic approaches to the development of pricing algorithms for software agents that incorporate foresight, i.e., an ability to model and predict responses by competitors. In the absence of foresight, prior work has shown that, in an economy of myopic software agents, undesirable system behaviors such as endless price wars can frequently occur (Kephart, 1998). We show how the introduction of even the smallest amount of lookahead in the agents' pricing algorithms can significantly reduce or eliminate the occurrence of price wars. We also investigate two approaches to developing algorithms that are capable of deep lookahead, while avoiding the classic problem of infinite recursion of opponent models. The two approaches are based on adaptations of (i) the classic minimax fixed-depth search algorithms used in two-player games such as chess; (ii) dynamic programming (DP)-style algorithms that have recently been extended to the domain of two-player zero-sum Markov games (Littman, 1994).
doi_str_mv 10.1016/S0167-9236(99)00074-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27537164</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167923699000743</els_id><sourcerecordid>52741127</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-ed4e47b97cae023cd242b2151a4233b12b6bad8f6fc43d1359a26b5c08e4413c3</originalsourceid><addsrcrecordid>eNqFkD9PwzAQxS0EEqXwEZAiBgRDwP9ixxNCFQWkSgzAbDnOJXWVxMVOkfj2uC1iYGG5W37v3b2H0DnBNwQTcfuahswVZeJKqWuMseQ5O0ATUkqWF1LJQzT5RY7RSYwrjAWTpZigYu4DRNcux7wyEepsHZx1Q5uZrvXBjcs-Zm7ITAvDmIH1g-8dxFN01JguwtnPnqL3-cPb7ClfvDw-z-4XuWWiGHOoOXBZKWkNYMpsTTmtKCmI4ZSxitBKVKYuG9FYzmrCCmWoqAqLS-CcMMum6HLvuw7-YwNx1L2LFrrODOA3UVNZMEkET-DFH3DlN2FIv2mKhcDpukpQsYds8DEGaHQK25vwpQnW2yb1rkm9rUkrpXdNapZ0d3sdpKifDoKO1sFgoXYB7Khr7_5x-AaJ73nB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>206600239</pqid></control><display><type>article</type><title>Foresight-based pricing algorithms in agent economies</title><source>Access via ScienceDirect (Elsevier)</source><creator>Tesauro, Gerald J. ; Kephart, Jeffrey O.</creator><creatorcontrib>Tesauro, Gerald J. ; Kephart, Jeffrey O.</creatorcontrib><description>We propose several heuristic approaches to the development of pricing algorithms for software agents that incorporate foresight, i.e., an ability to model and predict responses by competitors. In the absence of foresight, prior work has shown that, in an economy of myopic software agents, undesirable system behaviors such as endless price wars can frequently occur (Kephart, 1998). We show how the introduction of even the smallest amount of lookahead in the agents' pricing algorithms can significantly reduce or eliminate the occurrence of price wars. We also investigate two approaches to developing algorithms that are capable of deep lookahead, while avoiding the classic problem of infinite recursion of opponent models. The two approaches are based on adaptations of (i) the classic minimax fixed-depth search algorithms used in two-player games such as chess; (ii) dynamic programming (DP)-style algorithms that have recently been extended to the domain of two-player zero-sum Markov games (Littman, 1994).</description><identifier>ISSN: 0167-9236</identifier><identifier>EISSN: 1873-5797</identifier><identifier>DOI: 10.1016/S0167-9236(99)00074-3</identifier><identifier>CODEN: DSSYDK</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Adaptive multi-agent systems ; Agent foresight ; Agents ; Algorithms ; Dynamic programming ; Minimax search ; Pricing policies ; Studies</subject><ispartof>Decision Support Systems, 2000-03, Vol.28 (1), p.49-60</ispartof><rights>2000 Elsevier Science B.V.</rights><rights>Copyright Elsevier Sequoia S.A. Mar 2000</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-ed4e47b97cae023cd242b2151a4233b12b6bad8f6fc43d1359a26b5c08e4413c3</citedby><cites>FETCH-LOGICAL-c365t-ed4e47b97cae023cd242b2151a4233b12b6bad8f6fc43d1359a26b5c08e4413c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0167-9236(99)00074-3$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Tesauro, Gerald J.</creatorcontrib><creatorcontrib>Kephart, Jeffrey O.</creatorcontrib><title>Foresight-based pricing algorithms in agent economies</title><title>Decision Support Systems</title><description>We propose several heuristic approaches to the development of pricing algorithms for software agents that incorporate foresight, i.e., an ability to model and predict responses by competitors. In the absence of foresight, prior work has shown that, in an economy of myopic software agents, undesirable system behaviors such as endless price wars can frequently occur (Kephart, 1998). We show how the introduction of even the smallest amount of lookahead in the agents' pricing algorithms can significantly reduce or eliminate the occurrence of price wars. We also investigate two approaches to developing algorithms that are capable of deep lookahead, while avoiding the classic problem of infinite recursion of opponent models. The two approaches are based on adaptations of (i) the classic minimax fixed-depth search algorithms used in two-player games such as chess; (ii) dynamic programming (DP)-style algorithms that have recently been extended to the domain of two-player zero-sum Markov games (Littman, 1994).</description><subject>Adaptive multi-agent systems</subject><subject>Agent foresight</subject><subject>Agents</subject><subject>Algorithms</subject><subject>Dynamic programming</subject><subject>Minimax search</subject><subject>Pricing policies</subject><subject>Studies</subject><issn>0167-9236</issn><issn>1873-5797</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNqFkD9PwzAQxS0EEqXwEZAiBgRDwP9ixxNCFQWkSgzAbDnOJXWVxMVOkfj2uC1iYGG5W37v3b2H0DnBNwQTcfuahswVZeJKqWuMseQ5O0ATUkqWF1LJQzT5RY7RSYwrjAWTpZigYu4DRNcux7wyEepsHZx1Q5uZrvXBjcs-Zm7ITAvDmIH1g-8dxFN01JguwtnPnqL3-cPb7ClfvDw-z-4XuWWiGHOoOXBZKWkNYMpsTTmtKCmI4ZSxitBKVKYuG9FYzmrCCmWoqAqLS-CcMMum6HLvuw7-YwNx1L2LFrrODOA3UVNZMEkET-DFH3DlN2FIv2mKhcDpukpQsYds8DEGaHQK25vwpQnW2yb1rkm9rUkrpXdNapZ0d3sdpKifDoKO1sFgoXYB7Khr7_5x-AaJ73nB</recordid><startdate>20000301</startdate><enddate>20000301</enddate><creator>Tesauro, Gerald J.</creator><creator>Kephart, Jeffrey O.</creator><general>Elsevier B.V</general><general>Elsevier Sequoia S.A</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20000301</creationdate><title>Foresight-based pricing algorithms in agent economies</title><author>Tesauro, Gerald J. ; Kephart, Jeffrey O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-ed4e47b97cae023cd242b2151a4233b12b6bad8f6fc43d1359a26b5c08e4413c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Adaptive multi-agent systems</topic><topic>Agent foresight</topic><topic>Agents</topic><topic>Algorithms</topic><topic>Dynamic programming</topic><topic>Minimax search</topic><topic>Pricing policies</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tesauro, Gerald J.</creatorcontrib><creatorcontrib>Kephart, Jeffrey O.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Decision Support Systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tesauro, Gerald J.</au><au>Kephart, Jeffrey O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Foresight-based pricing algorithms in agent economies</atitle><jtitle>Decision Support Systems</jtitle><date>2000-03-01</date><risdate>2000</risdate><volume>28</volume><issue>1</issue><spage>49</spage><epage>60</epage><pages>49-60</pages><issn>0167-9236</issn><eissn>1873-5797</eissn><coden>DSSYDK</coden><abstract>We propose several heuristic approaches to the development of pricing algorithms for software agents that incorporate foresight, i.e., an ability to model and predict responses by competitors. In the absence of foresight, prior work has shown that, in an economy of myopic software agents, undesirable system behaviors such as endless price wars can frequently occur (Kephart, 1998). We show how the introduction of even the smallest amount of lookahead in the agents' pricing algorithms can significantly reduce or eliminate the occurrence of price wars. We also investigate two approaches to developing algorithms that are capable of deep lookahead, while avoiding the classic problem of infinite recursion of opponent models. The two approaches are based on adaptations of (i) the classic minimax fixed-depth search algorithms used in two-player games such as chess; (ii) dynamic programming (DP)-style algorithms that have recently been extended to the domain of two-player zero-sum Markov games (Littman, 1994).</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/S0167-9236(99)00074-3</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0167-9236
ispartof Decision Support Systems, 2000-03, Vol.28 (1), p.49-60
issn 0167-9236
1873-5797
language eng
recordid cdi_proquest_miscellaneous_27537164
source Access via ScienceDirect (Elsevier)
subjects Adaptive multi-agent systems
Agent foresight
Agents
Algorithms
Dynamic programming
Minimax search
Pricing policies
Studies
title Foresight-based pricing algorithms in agent economies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T02%3A37%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Foresight-based%20pricing%20algorithms%20in%20agent%20economies&rft.jtitle=Decision%20Support%20Systems&rft.au=Tesauro,%20Gerald%20J.&rft.date=2000-03-01&rft.volume=28&rft.issue=1&rft.spage=49&rft.epage=60&rft.pages=49-60&rft.issn=0167-9236&rft.eissn=1873-5797&rft.coden=DSSYDK&rft_id=info:doi/10.1016/S0167-9236(99)00074-3&rft_dat=%3Cproquest_cross%3E52741127%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=206600239&rft_id=info:pmid/&rft_els_id=S0167923699000743&rfr_iscdi=true