Electroosmotic flow in fused deposition modeling (FDM) 3D‐printed microchannels

Electroosmotic flow (EOF) was determined in tridimensional (3D)‐printed microchannels with dimensions smaller than 100 µm. Fused deposition modeling 3D printing using thermoplastic filaments of PETG (polyethylene terephthalate glycol), PLA (polylactic acid), and ABS (acrylonitrile butadiene styrene)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electrophoresis 2023-03, Vol.44 (5-6), p.558-562
Hauptverfasser: Barbosa, Fabio Henrique Barros, Quero, Reverson Fernandes, Rocha, Kionnys Novaes, Costa, Samuel Carvalho, Jesus, Dosil Pereira
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 562
container_issue 5-6
container_start_page 558
container_title Electrophoresis
container_volume 44
creator Barbosa, Fabio Henrique Barros
Quero, Reverson Fernandes
Rocha, Kionnys Novaes
Costa, Samuel Carvalho
Jesus, Dosil Pereira
description Electroosmotic flow (EOF) was determined in tridimensional (3D)‐printed microchannels with dimensions smaller than 100 µm. Fused deposition modeling 3D printing using thermoplastic filaments of PETG (polyethylene terephthalate glycol), PLA (polylactic acid), and ABS (acrylonitrile butadiene styrene) were used to fabricate the microchannels. The current monitoring method and sodium phosphate solutions at different pH values (3–10) were used for the EOF mobility (µEOF) measurements, which ranged from 2.00 × 10−4 to 12.52 × 10−4 cm2 V−1 s−1. The highest and the smallest µEOF were obtained for the PLA and PETG microchannels, respectively. Adding the cationic surfactant cetyltrimethylammonium bromide to the sodium phosphate solution caused EOF direction reversion in all the studied microchannels. The obtained results can be interesting for developing 3D‐printed microfluidic devices, in which EOF is relevant.
doi_str_mv 10.1002/elps.202200211
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2753311974</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2753311974</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3686-426e598b6e98fc77a0df7dfe75d6ee6a89e7bd677d8601ab17b85338d1d170fb3</originalsourceid><addsrcrecordid>eNqF0LtOwzAUBmALgaAUVkYUiaUMKb7FdkbUCyAVAQLmKIlPwMiJS5yoYuMReEaeBKNCBxamI0uff53zI3RE8JhgTM_ALv2YYkrDg5AtNCAJpTEVim2jASaSxVixZA_te_-CMeYp57tojwmeJjjlA3Q3s1B2rXO-dp0po8q6VWSaqOo96EjD0nnTGddEtdNgTfMUjebT69OITT_fP5atabrAalO2rnzOmwasP0A7VW49HP7MIXqczx4ml_Hi5uJqcr6ISyaUiDkVkKSqEJCqqpQyx7qSugKZaAEgcpWCLLSQUiuBSV4QWaiEMaWJJhJXBRui0Tp32brXHnyX1caXYG3egOt9RmXghKSSB3ryh764vm3CdkGphBJO0iSo8VqFY7xvocrCfXXevmUEZ99lZ99lZ5uyw4fjn9i-qEFv-G-7AfA1WBkLb__EZbPF7b2UXLAv69aK1g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2785214195</pqid></control><display><type>article</type><title>Electroosmotic flow in fused deposition modeling (FDM) 3D‐printed microchannels</title><source>MEDLINE</source><source>Wiley Journals</source><creator>Barbosa, Fabio Henrique Barros ; Quero, Reverson Fernandes ; Rocha, Kionnys Novaes ; Costa, Samuel Carvalho ; Jesus, Dosil Pereira</creator><creatorcontrib>Barbosa, Fabio Henrique Barros ; Quero, Reverson Fernandes ; Rocha, Kionnys Novaes ; Costa, Samuel Carvalho ; Jesus, Dosil Pereira</creatorcontrib><description>Electroosmotic flow (EOF) was determined in tridimensional (3D)‐printed microchannels with dimensions smaller than 100 µm. Fused deposition modeling 3D printing using thermoplastic filaments of PETG (polyethylene terephthalate glycol), PLA (polylactic acid), and ABS (acrylonitrile butadiene styrene) were used to fabricate the microchannels. The current monitoring method and sodium phosphate solutions at different pH values (3–10) were used for the EOF mobility (µEOF) measurements, which ranged from 2.00 × 10−4 to 12.52 × 10−4 cm2 V−1 s−1. The highest and the smallest µEOF were obtained for the PLA and PETG microchannels, respectively. Adding the cationic surfactant cetyltrimethylammonium bromide to the sodium phosphate solution caused EOF direction reversion in all the studied microchannels. The obtained results can be interesting for developing 3D‐printed microfluidic devices, in which EOF is relevant.</description><identifier>ISSN: 0173-0835</identifier><identifier>EISSN: 1522-2683</identifier><identifier>DOI: 10.1002/elps.202200211</identifier><identifier>PMID: 36495094</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>ABS resins ; Acrylonitrile butadiene styrene ; additive manufacturing ; capillary electrophoresis ; Cetyltrimethylammonium bromide ; Deposition ; Electroosmosis ; Electroosmosis - methods ; Filaments ; Fused deposition modeling ; Microchannels ; microfluidic ; Microfluidic devices ; Phosphates ; Polyethylene terephthalate ; Polylactic acid ; Printing, Three-Dimensional ; Sodium phosphate ; Three dimensional flow ; Three dimensional models ; Three dimensional printing</subject><ispartof>Electrophoresis, 2023-03, Vol.44 (5-6), p.558-562</ispartof><rights>2022 Wiley‐VCH GmbH.</rights><rights>2022 Wiley-VCH GmbH.</rights><rights>2023 Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3686-426e598b6e98fc77a0df7dfe75d6ee6a89e7bd677d8601ab17b85338d1d170fb3</citedby><cites>FETCH-LOGICAL-c3686-426e598b6e98fc77a0df7dfe75d6ee6a89e7bd677d8601ab17b85338d1d170fb3</cites><orcidid>0000-0001-5239-5874</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Felps.202200211$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Felps.202200211$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36495094$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Barbosa, Fabio Henrique Barros</creatorcontrib><creatorcontrib>Quero, Reverson Fernandes</creatorcontrib><creatorcontrib>Rocha, Kionnys Novaes</creatorcontrib><creatorcontrib>Costa, Samuel Carvalho</creatorcontrib><creatorcontrib>Jesus, Dosil Pereira</creatorcontrib><title>Electroosmotic flow in fused deposition modeling (FDM) 3D‐printed microchannels</title><title>Electrophoresis</title><addtitle>Electrophoresis</addtitle><description>Electroosmotic flow (EOF) was determined in tridimensional (3D)‐printed microchannels with dimensions smaller than 100 µm. Fused deposition modeling 3D printing using thermoplastic filaments of PETG (polyethylene terephthalate glycol), PLA (polylactic acid), and ABS (acrylonitrile butadiene styrene) were used to fabricate the microchannels. The current monitoring method and sodium phosphate solutions at different pH values (3–10) were used for the EOF mobility (µEOF) measurements, which ranged from 2.00 × 10−4 to 12.52 × 10−4 cm2 V−1 s−1. The highest and the smallest µEOF were obtained for the PLA and PETG microchannels, respectively. Adding the cationic surfactant cetyltrimethylammonium bromide to the sodium phosphate solution caused EOF direction reversion in all the studied microchannels. The obtained results can be interesting for developing 3D‐printed microfluidic devices, in which EOF is relevant.</description><subject>ABS resins</subject><subject>Acrylonitrile butadiene styrene</subject><subject>additive manufacturing</subject><subject>capillary electrophoresis</subject><subject>Cetyltrimethylammonium bromide</subject><subject>Deposition</subject><subject>Electroosmosis</subject><subject>Electroosmosis - methods</subject><subject>Filaments</subject><subject>Fused deposition modeling</subject><subject>Microchannels</subject><subject>microfluidic</subject><subject>Microfluidic devices</subject><subject>Phosphates</subject><subject>Polyethylene terephthalate</subject><subject>Polylactic acid</subject><subject>Printing, Three-Dimensional</subject><subject>Sodium phosphate</subject><subject>Three dimensional flow</subject><subject>Three dimensional models</subject><subject>Three dimensional printing</subject><issn>0173-0835</issn><issn>1522-2683</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0LtOwzAUBmALgaAUVkYUiaUMKb7FdkbUCyAVAQLmKIlPwMiJS5yoYuMReEaeBKNCBxamI0uff53zI3RE8JhgTM_ALv2YYkrDg5AtNCAJpTEVim2jASaSxVixZA_te_-CMeYp57tojwmeJjjlA3Q3s1B2rXO-dp0po8q6VWSaqOo96EjD0nnTGddEtdNgTfMUjebT69OITT_fP5atabrAalO2rnzOmwasP0A7VW49HP7MIXqczx4ml_Hi5uJqcr6ISyaUiDkVkKSqEJCqqpQyx7qSugKZaAEgcpWCLLSQUiuBSV4QWaiEMaWJJhJXBRui0Tp32brXHnyX1caXYG3egOt9RmXghKSSB3ryh764vm3CdkGphBJO0iSo8VqFY7xvocrCfXXevmUEZ99lZ99lZ5uyw4fjn9i-qEFv-G-7AfA1WBkLb__EZbPF7b2UXLAv69aK1g</recordid><startdate>202303</startdate><enddate>202303</enddate><creator>Barbosa, Fabio Henrique Barros</creator><creator>Quero, Reverson Fernandes</creator><creator>Rocha, Kionnys Novaes</creator><creator>Costa, Samuel Carvalho</creator><creator>Jesus, Dosil Pereira</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5239-5874</orcidid></search><sort><creationdate>202303</creationdate><title>Electroosmotic flow in fused deposition modeling (FDM) 3D‐printed microchannels</title><author>Barbosa, Fabio Henrique Barros ; Quero, Reverson Fernandes ; Rocha, Kionnys Novaes ; Costa, Samuel Carvalho ; Jesus, Dosil Pereira</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3686-426e598b6e98fc77a0df7dfe75d6ee6a89e7bd677d8601ab17b85338d1d170fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>ABS resins</topic><topic>Acrylonitrile butadiene styrene</topic><topic>additive manufacturing</topic><topic>capillary electrophoresis</topic><topic>Cetyltrimethylammonium bromide</topic><topic>Deposition</topic><topic>Electroosmosis</topic><topic>Electroosmosis - methods</topic><topic>Filaments</topic><topic>Fused deposition modeling</topic><topic>Microchannels</topic><topic>microfluidic</topic><topic>Microfluidic devices</topic><topic>Phosphates</topic><topic>Polyethylene terephthalate</topic><topic>Polylactic acid</topic><topic>Printing, Three-Dimensional</topic><topic>Sodium phosphate</topic><topic>Three dimensional flow</topic><topic>Three dimensional models</topic><topic>Three dimensional printing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barbosa, Fabio Henrique Barros</creatorcontrib><creatorcontrib>Quero, Reverson Fernandes</creatorcontrib><creatorcontrib>Rocha, Kionnys Novaes</creatorcontrib><creatorcontrib>Costa, Samuel Carvalho</creatorcontrib><creatorcontrib>Jesus, Dosil Pereira</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Electrophoresis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barbosa, Fabio Henrique Barros</au><au>Quero, Reverson Fernandes</au><au>Rocha, Kionnys Novaes</au><au>Costa, Samuel Carvalho</au><au>Jesus, Dosil Pereira</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electroosmotic flow in fused deposition modeling (FDM) 3D‐printed microchannels</atitle><jtitle>Electrophoresis</jtitle><addtitle>Electrophoresis</addtitle><date>2023-03</date><risdate>2023</risdate><volume>44</volume><issue>5-6</issue><spage>558</spage><epage>562</epage><pages>558-562</pages><issn>0173-0835</issn><eissn>1522-2683</eissn><abstract>Electroosmotic flow (EOF) was determined in tridimensional (3D)‐printed microchannels with dimensions smaller than 100 µm. Fused deposition modeling 3D printing using thermoplastic filaments of PETG (polyethylene terephthalate glycol), PLA (polylactic acid), and ABS (acrylonitrile butadiene styrene) were used to fabricate the microchannels. The current monitoring method and sodium phosphate solutions at different pH values (3–10) were used for the EOF mobility (µEOF) measurements, which ranged from 2.00 × 10−4 to 12.52 × 10−4 cm2 V−1 s−1. The highest and the smallest µEOF were obtained for the PLA and PETG microchannels, respectively. Adding the cationic surfactant cetyltrimethylammonium bromide to the sodium phosphate solution caused EOF direction reversion in all the studied microchannels. The obtained results can be interesting for developing 3D‐printed microfluidic devices, in which EOF is relevant.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>36495094</pmid><doi>10.1002/elps.202200211</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-5239-5874</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0173-0835
ispartof Electrophoresis, 2023-03, Vol.44 (5-6), p.558-562
issn 0173-0835
1522-2683
language eng
recordid cdi_proquest_miscellaneous_2753311974
source MEDLINE; Wiley Journals
subjects ABS resins
Acrylonitrile butadiene styrene
additive manufacturing
capillary electrophoresis
Cetyltrimethylammonium bromide
Deposition
Electroosmosis
Electroosmosis - methods
Filaments
Fused deposition modeling
Microchannels
microfluidic
Microfluidic devices
Phosphates
Polyethylene terephthalate
Polylactic acid
Printing, Three-Dimensional
Sodium phosphate
Three dimensional flow
Three dimensional models
Three dimensional printing
title Electroosmotic flow in fused deposition modeling (FDM) 3D‐printed microchannels
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T11%3A08%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electroosmotic%20flow%20in%20fused%20deposition%20modeling%20(FDM)%203D%E2%80%90printed%20microchannels&rft.jtitle=Electrophoresis&rft.au=Barbosa,%20Fabio%20Henrique%20Barros&rft.date=2023-03&rft.volume=44&rft.issue=5-6&rft.spage=558&rft.epage=562&rft.pages=558-562&rft.issn=0173-0835&rft.eissn=1522-2683&rft_id=info:doi/10.1002/elps.202200211&rft_dat=%3Cproquest_cross%3E2753311974%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2785214195&rft_id=info:pmid/36495094&rfr_iscdi=true