Electroosmotic flow in fused deposition modeling (FDM) 3D‐printed microchannels
Electroosmotic flow (EOF) was determined in tridimensional (3D)‐printed microchannels with dimensions smaller than 100 µm. Fused deposition modeling 3D printing using thermoplastic filaments of PETG (polyethylene terephthalate glycol), PLA (polylactic acid), and ABS (acrylonitrile butadiene styrene)...
Gespeichert in:
Veröffentlicht in: | Electrophoresis 2023-03, Vol.44 (5-6), p.558-562 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 562 |
---|---|
container_issue | 5-6 |
container_start_page | 558 |
container_title | Electrophoresis |
container_volume | 44 |
creator | Barbosa, Fabio Henrique Barros Quero, Reverson Fernandes Rocha, Kionnys Novaes Costa, Samuel Carvalho Jesus, Dosil Pereira |
description | Electroosmotic flow (EOF) was determined in tridimensional (3D)‐printed microchannels with dimensions smaller than 100 µm. Fused deposition modeling 3D printing using thermoplastic filaments of PETG (polyethylene terephthalate glycol), PLA (polylactic acid), and ABS (acrylonitrile butadiene styrene) were used to fabricate the microchannels. The current monitoring method and sodium phosphate solutions at different pH values (3–10) were used for the EOF mobility (µEOF) measurements, which ranged from 2.00 × 10−4 to 12.52 × 10−4 cm2 V−1 s−1. The highest and the smallest µEOF were obtained for the PLA and PETG microchannels, respectively. Adding the cationic surfactant cetyltrimethylammonium bromide to the sodium phosphate solution caused EOF direction reversion in all the studied microchannels. The obtained results can be interesting for developing 3D‐printed microfluidic devices, in which EOF is relevant. |
doi_str_mv | 10.1002/elps.202200211 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2753311974</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2753311974</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3686-426e598b6e98fc77a0df7dfe75d6ee6a89e7bd677d8601ab17b85338d1d170fb3</originalsourceid><addsrcrecordid>eNqF0LtOwzAUBmALgaAUVkYUiaUMKb7FdkbUCyAVAQLmKIlPwMiJS5yoYuMReEaeBKNCBxamI0uff53zI3RE8JhgTM_ALv2YYkrDg5AtNCAJpTEVim2jASaSxVixZA_te_-CMeYp57tojwmeJjjlA3Q3s1B2rXO-dp0po8q6VWSaqOo96EjD0nnTGddEtdNgTfMUjebT69OITT_fP5atabrAalO2rnzOmwasP0A7VW49HP7MIXqczx4ml_Hi5uJqcr6ISyaUiDkVkKSqEJCqqpQyx7qSugKZaAEgcpWCLLSQUiuBSV4QWaiEMaWJJhJXBRui0Tp32brXHnyX1caXYG3egOt9RmXghKSSB3ryh764vm3CdkGphBJO0iSo8VqFY7xvocrCfXXevmUEZ99lZ99lZ5uyw4fjn9i-qEFv-G-7AfA1WBkLb__EZbPF7b2UXLAv69aK1g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2785214195</pqid></control><display><type>article</type><title>Electroosmotic flow in fused deposition modeling (FDM) 3D‐printed microchannels</title><source>MEDLINE</source><source>Wiley Journals</source><creator>Barbosa, Fabio Henrique Barros ; Quero, Reverson Fernandes ; Rocha, Kionnys Novaes ; Costa, Samuel Carvalho ; Jesus, Dosil Pereira</creator><creatorcontrib>Barbosa, Fabio Henrique Barros ; Quero, Reverson Fernandes ; Rocha, Kionnys Novaes ; Costa, Samuel Carvalho ; Jesus, Dosil Pereira</creatorcontrib><description>Electroosmotic flow (EOF) was determined in tridimensional (3D)‐printed microchannels with dimensions smaller than 100 µm. Fused deposition modeling 3D printing using thermoplastic filaments of PETG (polyethylene terephthalate glycol), PLA (polylactic acid), and ABS (acrylonitrile butadiene styrene) were used to fabricate the microchannels. The current monitoring method and sodium phosphate solutions at different pH values (3–10) were used for the EOF mobility (µEOF) measurements, which ranged from 2.00 × 10−4 to 12.52 × 10−4 cm2 V−1 s−1. The highest and the smallest µEOF were obtained for the PLA and PETG microchannels, respectively. Adding the cationic surfactant cetyltrimethylammonium bromide to the sodium phosphate solution caused EOF direction reversion in all the studied microchannels. The obtained results can be interesting for developing 3D‐printed microfluidic devices, in which EOF is relevant.</description><identifier>ISSN: 0173-0835</identifier><identifier>EISSN: 1522-2683</identifier><identifier>DOI: 10.1002/elps.202200211</identifier><identifier>PMID: 36495094</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>ABS resins ; Acrylonitrile butadiene styrene ; additive manufacturing ; capillary electrophoresis ; Cetyltrimethylammonium bromide ; Deposition ; Electroosmosis ; Electroosmosis - methods ; Filaments ; Fused deposition modeling ; Microchannels ; microfluidic ; Microfluidic devices ; Phosphates ; Polyethylene terephthalate ; Polylactic acid ; Printing, Three-Dimensional ; Sodium phosphate ; Three dimensional flow ; Three dimensional models ; Three dimensional printing</subject><ispartof>Electrophoresis, 2023-03, Vol.44 (5-6), p.558-562</ispartof><rights>2022 Wiley‐VCH GmbH.</rights><rights>2022 Wiley-VCH GmbH.</rights><rights>2023 Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3686-426e598b6e98fc77a0df7dfe75d6ee6a89e7bd677d8601ab17b85338d1d170fb3</citedby><cites>FETCH-LOGICAL-c3686-426e598b6e98fc77a0df7dfe75d6ee6a89e7bd677d8601ab17b85338d1d170fb3</cites><orcidid>0000-0001-5239-5874</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Felps.202200211$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Felps.202200211$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36495094$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Barbosa, Fabio Henrique Barros</creatorcontrib><creatorcontrib>Quero, Reverson Fernandes</creatorcontrib><creatorcontrib>Rocha, Kionnys Novaes</creatorcontrib><creatorcontrib>Costa, Samuel Carvalho</creatorcontrib><creatorcontrib>Jesus, Dosil Pereira</creatorcontrib><title>Electroosmotic flow in fused deposition modeling (FDM) 3D‐printed microchannels</title><title>Electrophoresis</title><addtitle>Electrophoresis</addtitle><description>Electroosmotic flow (EOF) was determined in tridimensional (3D)‐printed microchannels with dimensions smaller than 100 µm. Fused deposition modeling 3D printing using thermoplastic filaments of PETG (polyethylene terephthalate glycol), PLA (polylactic acid), and ABS (acrylonitrile butadiene styrene) were used to fabricate the microchannels. The current monitoring method and sodium phosphate solutions at different pH values (3–10) were used for the EOF mobility (µEOF) measurements, which ranged from 2.00 × 10−4 to 12.52 × 10−4 cm2 V−1 s−1. The highest and the smallest µEOF were obtained for the PLA and PETG microchannels, respectively. Adding the cationic surfactant cetyltrimethylammonium bromide to the sodium phosphate solution caused EOF direction reversion in all the studied microchannels. The obtained results can be interesting for developing 3D‐printed microfluidic devices, in which EOF is relevant.</description><subject>ABS resins</subject><subject>Acrylonitrile butadiene styrene</subject><subject>additive manufacturing</subject><subject>capillary electrophoresis</subject><subject>Cetyltrimethylammonium bromide</subject><subject>Deposition</subject><subject>Electroosmosis</subject><subject>Electroosmosis - methods</subject><subject>Filaments</subject><subject>Fused deposition modeling</subject><subject>Microchannels</subject><subject>microfluidic</subject><subject>Microfluidic devices</subject><subject>Phosphates</subject><subject>Polyethylene terephthalate</subject><subject>Polylactic acid</subject><subject>Printing, Three-Dimensional</subject><subject>Sodium phosphate</subject><subject>Three dimensional flow</subject><subject>Three dimensional models</subject><subject>Three dimensional printing</subject><issn>0173-0835</issn><issn>1522-2683</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0LtOwzAUBmALgaAUVkYUiaUMKb7FdkbUCyAVAQLmKIlPwMiJS5yoYuMReEaeBKNCBxamI0uff53zI3RE8JhgTM_ALv2YYkrDg5AtNCAJpTEVim2jASaSxVixZA_te_-CMeYp57tojwmeJjjlA3Q3s1B2rXO-dp0po8q6VWSaqOo96EjD0nnTGddEtdNgTfMUjebT69OITT_fP5atabrAalO2rnzOmwasP0A7VW49HP7MIXqczx4ml_Hi5uJqcr6ISyaUiDkVkKSqEJCqqpQyx7qSugKZaAEgcpWCLLSQUiuBSV4QWaiEMaWJJhJXBRui0Tp32brXHnyX1caXYG3egOt9RmXghKSSB3ryh764vm3CdkGphBJO0iSo8VqFY7xvocrCfXXevmUEZ99lZ99lZ5uyw4fjn9i-qEFv-G-7AfA1WBkLb__EZbPF7b2UXLAv69aK1g</recordid><startdate>202303</startdate><enddate>202303</enddate><creator>Barbosa, Fabio Henrique Barros</creator><creator>Quero, Reverson Fernandes</creator><creator>Rocha, Kionnys Novaes</creator><creator>Costa, Samuel Carvalho</creator><creator>Jesus, Dosil Pereira</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5239-5874</orcidid></search><sort><creationdate>202303</creationdate><title>Electroosmotic flow in fused deposition modeling (FDM) 3D‐printed microchannels</title><author>Barbosa, Fabio Henrique Barros ; Quero, Reverson Fernandes ; Rocha, Kionnys Novaes ; Costa, Samuel Carvalho ; Jesus, Dosil Pereira</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3686-426e598b6e98fc77a0df7dfe75d6ee6a89e7bd677d8601ab17b85338d1d170fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>ABS resins</topic><topic>Acrylonitrile butadiene styrene</topic><topic>additive manufacturing</topic><topic>capillary electrophoresis</topic><topic>Cetyltrimethylammonium bromide</topic><topic>Deposition</topic><topic>Electroosmosis</topic><topic>Electroosmosis - methods</topic><topic>Filaments</topic><topic>Fused deposition modeling</topic><topic>Microchannels</topic><topic>microfluidic</topic><topic>Microfluidic devices</topic><topic>Phosphates</topic><topic>Polyethylene terephthalate</topic><topic>Polylactic acid</topic><topic>Printing, Three-Dimensional</topic><topic>Sodium phosphate</topic><topic>Three dimensional flow</topic><topic>Three dimensional models</topic><topic>Three dimensional printing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barbosa, Fabio Henrique Barros</creatorcontrib><creatorcontrib>Quero, Reverson Fernandes</creatorcontrib><creatorcontrib>Rocha, Kionnys Novaes</creatorcontrib><creatorcontrib>Costa, Samuel Carvalho</creatorcontrib><creatorcontrib>Jesus, Dosil Pereira</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Electrophoresis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barbosa, Fabio Henrique Barros</au><au>Quero, Reverson Fernandes</au><au>Rocha, Kionnys Novaes</au><au>Costa, Samuel Carvalho</au><au>Jesus, Dosil Pereira</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electroosmotic flow in fused deposition modeling (FDM) 3D‐printed microchannels</atitle><jtitle>Electrophoresis</jtitle><addtitle>Electrophoresis</addtitle><date>2023-03</date><risdate>2023</risdate><volume>44</volume><issue>5-6</issue><spage>558</spage><epage>562</epage><pages>558-562</pages><issn>0173-0835</issn><eissn>1522-2683</eissn><abstract>Electroosmotic flow (EOF) was determined in tridimensional (3D)‐printed microchannels with dimensions smaller than 100 µm. Fused deposition modeling 3D printing using thermoplastic filaments of PETG (polyethylene terephthalate glycol), PLA (polylactic acid), and ABS (acrylonitrile butadiene styrene) were used to fabricate the microchannels. The current monitoring method and sodium phosphate solutions at different pH values (3–10) were used for the EOF mobility (µEOF) measurements, which ranged from 2.00 × 10−4 to 12.52 × 10−4 cm2 V−1 s−1. The highest and the smallest µEOF were obtained for the PLA and PETG microchannels, respectively. Adding the cationic surfactant cetyltrimethylammonium bromide to the sodium phosphate solution caused EOF direction reversion in all the studied microchannels. The obtained results can be interesting for developing 3D‐printed microfluidic devices, in which EOF is relevant.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>36495094</pmid><doi>10.1002/elps.202200211</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-5239-5874</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0173-0835 |
ispartof | Electrophoresis, 2023-03, Vol.44 (5-6), p.558-562 |
issn | 0173-0835 1522-2683 |
language | eng |
recordid | cdi_proquest_miscellaneous_2753311974 |
source | MEDLINE; Wiley Journals |
subjects | ABS resins Acrylonitrile butadiene styrene additive manufacturing capillary electrophoresis Cetyltrimethylammonium bromide Deposition Electroosmosis Electroosmosis - methods Filaments Fused deposition modeling Microchannels microfluidic Microfluidic devices Phosphates Polyethylene terephthalate Polylactic acid Printing, Three-Dimensional Sodium phosphate Three dimensional flow Three dimensional models Three dimensional printing |
title | Electroosmotic flow in fused deposition modeling (FDM) 3D‐printed microchannels |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T11%3A08%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electroosmotic%20flow%20in%20fused%20deposition%20modeling%20(FDM)%203D%E2%80%90printed%20microchannels&rft.jtitle=Electrophoresis&rft.au=Barbosa,%20Fabio%20Henrique%20Barros&rft.date=2023-03&rft.volume=44&rft.issue=5-6&rft.spage=558&rft.epage=562&rft.pages=558-562&rft.issn=0173-0835&rft.eissn=1522-2683&rft_id=info:doi/10.1002/elps.202200211&rft_dat=%3Cproquest_cross%3E2753311974%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2785214195&rft_id=info:pmid/36495094&rfr_iscdi=true |