Sex‐specific effects of developmental morphine exposure and rearing environments on hippocampal spatial memory

Developmental morphine (MOR) exposure (DME) detrimentally affects the cognitive abilities of the next generation. It is shown that postnatal rearing environments and prenatal conditions effectively impact memory. The present study investigated the effects of DME, postweaning rearing, and sex on spat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of developmental neuroscience 2023-04, Vol.83 (2), p.178-190
Hauptverfasser: Sarkaki, Alireza, Mard, Seyed Ali, Bakhtiari, Nima, Yazdanfar, Neda
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 190
container_issue 2
container_start_page 178
container_title International journal of developmental neuroscience
container_volume 83
creator Sarkaki, Alireza
Mard, Seyed Ali
Bakhtiari, Nima
Yazdanfar, Neda
description Developmental morphine (MOR) exposure (DME) detrimentally affects the cognitive abilities of the next generation. It is shown that postnatal rearing environments and prenatal conditions effectively impact memory. The present study investigated the effects of DME, postweaning rearing, and sex on spatial learning and memory. At molecular level, we evaluated mRNA levels of brain‐derived neurotrophic factor, cyclic AMP response element‐binding protein (CREB), μ‐opioid receptor, and ΔFosB in the hippocampus of male offspring. Female Wistar rats were treated with escalating doses of MOR or saline before mating, gestation, and lactation. On Postnatal Day 22, the male and female pups were divided into 12 groups and raised for 2 months under different conditions: standard, isolated (ISO), or enriched environment. Afterward, the Morris water maze task measured spatial learning and reference memory; rats were then sacrificed to assess hippocampus gene expressions. Results indicated the DME and isolated rearing increased latency to find the hidden platform in male offspring. DME was insignificant in female offspring, whereas rearing environments significantly altered escape latency in both sexes. We also found that the enriched environment upregulated the brain‐derived neurotrophic factor mRNA in both saline and MOR groups, whereas it downregulated the mRNA levels of CREB1, μ‐opioid receptor, and ΔFosB in the MOR group. In addition, the DME enhanced CREB1, μ‐opioid receptor, and ΔFosB gene expression in the MOR + isolated group. Our findings signified the effects of DME, rearing environment, and sex on the spatial learning abilities of offspring. Also, we showed that DME and rearing conditions could manipulate hippocampal neurochemistry.
doi_str_mv 10.1002/jdn.10245
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2753311785</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2753311785</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3255-bcc2039a415d1ffb5e88e2a3e6e3884dc3076d7f4ebbf2bb01b4ca9aab1cb9933</originalsourceid><addsrcrecordid>eNp1kL1OwzAURi0EgvIz8ALIIwyhdmw3yYj4RxUMgMQW2c41GCW2sdtCNx6BZ-RJSCmwMd07nO8MB6FdSg4pIfnwuXH9k3Oxgga0LFjGC_6wigakYKNMFLzcQJspPRNChCB8HW2wEa8EFdUAhVt4-3z_SAG0NVZjMAb0JGFvcAMzaH3owE1kizsfw5N1gOEt-DSNgKVrcAQZrXvE4GY2erdg-63DTzYEr2UX-mUKcmIXBugd8220ZmSbYOfnbqH7s9O744tsfHN-eXw0zjTLhciU1jlhleRUNNQYJaAsIZcMRsDKkjeakWLUFIaDUiZXilDFtaykVFSrqmJsC-0vvSH6lymkSd3ZpKFtpQM_TXVeCMYoLUrRowdLVEefUgRTh2g7Gec1JfUicN0Hrr8D9-zej3aqOmj-yN-iPTBcAq-2hfn_pvrq5Hqp_AKbtol0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2753311785</pqid></control><display><type>article</type><title>Sex‐specific effects of developmental morphine exposure and rearing environments on hippocampal spatial memory</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Sarkaki, Alireza ; Mard, Seyed Ali ; Bakhtiari, Nima ; Yazdanfar, Neda</creator><creatorcontrib>Sarkaki, Alireza ; Mard, Seyed Ali ; Bakhtiari, Nima ; Yazdanfar, Neda</creatorcontrib><description>Developmental morphine (MOR) exposure (DME) detrimentally affects the cognitive abilities of the next generation. It is shown that postnatal rearing environments and prenatal conditions effectively impact memory. The present study investigated the effects of DME, postweaning rearing, and sex on spatial learning and memory. At molecular level, we evaluated mRNA levels of brain‐derived neurotrophic factor, cyclic AMP response element‐binding protein (CREB), μ‐opioid receptor, and ΔFosB in the hippocampus of male offspring. Female Wistar rats were treated with escalating doses of MOR or saline before mating, gestation, and lactation. On Postnatal Day 22, the male and female pups were divided into 12 groups and raised for 2 months under different conditions: standard, isolated (ISO), or enriched environment. Afterward, the Morris water maze task measured spatial learning and reference memory; rats were then sacrificed to assess hippocampus gene expressions. Results indicated the DME and isolated rearing increased latency to find the hidden platform in male offspring. DME was insignificant in female offspring, whereas rearing environments significantly altered escape latency in both sexes. We also found that the enriched environment upregulated the brain‐derived neurotrophic factor mRNA in both saline and MOR groups, whereas it downregulated the mRNA levels of CREB1, μ‐opioid receptor, and ΔFosB in the MOR group. In addition, the DME enhanced CREB1, μ‐opioid receptor, and ΔFosB gene expression in the MOR + isolated group. Our findings signified the effects of DME, rearing environment, and sex on the spatial learning abilities of offspring. Also, we showed that DME and rearing conditions could manipulate hippocampal neurochemistry.</description><identifier>ISSN: 0736-5748</identifier><identifier>EISSN: 1873-474X</identifier><identifier>DOI: 10.1002/jdn.10245</identifier><identifier>PMID: 36495159</identifier><language>eng</language><publisher>United States</publisher><subject>Animals ; Brain-Derived Neurotrophic Factor - genetics ; Brain-Derived Neurotrophic Factor - metabolism ; CREB ; enriched environment ; Female ; Hippocampus - metabolism ; Humans ; Male ; Maze Learning ; morphine ; Morphine - pharmacology ; Pregnancy ; Prenatal Exposure Delayed Effects - metabolism ; Rats ; Rats, Wistar ; Receptors, Opioid ; RNA, Messenger - metabolism ; sex ; Spatial Memory - physiology ; ΔFosB ; μ‐opioid receptor</subject><ispartof>International journal of developmental neuroscience, 2023-04, Vol.83 (2), p.178-190</ispartof><rights>2022 International Society for Developmental Neuroscience.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3255-bcc2039a415d1ffb5e88e2a3e6e3884dc3076d7f4ebbf2bb01b4ca9aab1cb9933</citedby><cites>FETCH-LOGICAL-c3255-bcc2039a415d1ffb5e88e2a3e6e3884dc3076d7f4ebbf2bb01b4ca9aab1cb9933</cites><orcidid>0000-0003-1259-8735</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjdn.10245$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjdn.10245$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36495159$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sarkaki, Alireza</creatorcontrib><creatorcontrib>Mard, Seyed Ali</creatorcontrib><creatorcontrib>Bakhtiari, Nima</creatorcontrib><creatorcontrib>Yazdanfar, Neda</creatorcontrib><title>Sex‐specific effects of developmental morphine exposure and rearing environments on hippocampal spatial memory</title><title>International journal of developmental neuroscience</title><addtitle>Int J Dev Neurosci</addtitle><description>Developmental morphine (MOR) exposure (DME) detrimentally affects the cognitive abilities of the next generation. It is shown that postnatal rearing environments and prenatal conditions effectively impact memory. The present study investigated the effects of DME, postweaning rearing, and sex on spatial learning and memory. At molecular level, we evaluated mRNA levels of brain‐derived neurotrophic factor, cyclic AMP response element‐binding protein (CREB), μ‐opioid receptor, and ΔFosB in the hippocampus of male offspring. Female Wistar rats were treated with escalating doses of MOR or saline before mating, gestation, and lactation. On Postnatal Day 22, the male and female pups were divided into 12 groups and raised for 2 months under different conditions: standard, isolated (ISO), or enriched environment. Afterward, the Morris water maze task measured spatial learning and reference memory; rats were then sacrificed to assess hippocampus gene expressions. Results indicated the DME and isolated rearing increased latency to find the hidden platform in male offspring. DME was insignificant in female offspring, whereas rearing environments significantly altered escape latency in both sexes. We also found that the enriched environment upregulated the brain‐derived neurotrophic factor mRNA in both saline and MOR groups, whereas it downregulated the mRNA levels of CREB1, μ‐opioid receptor, and ΔFosB in the MOR group. In addition, the DME enhanced CREB1, μ‐opioid receptor, and ΔFosB gene expression in the MOR + isolated group. Our findings signified the effects of DME, rearing environment, and sex on the spatial learning abilities of offspring. Also, we showed that DME and rearing conditions could manipulate hippocampal neurochemistry.</description><subject>Animals</subject><subject>Brain-Derived Neurotrophic Factor - genetics</subject><subject>Brain-Derived Neurotrophic Factor - metabolism</subject><subject>CREB</subject><subject>enriched environment</subject><subject>Female</subject><subject>Hippocampus - metabolism</subject><subject>Humans</subject><subject>Male</subject><subject>Maze Learning</subject><subject>morphine</subject><subject>Morphine - pharmacology</subject><subject>Pregnancy</subject><subject>Prenatal Exposure Delayed Effects - metabolism</subject><subject>Rats</subject><subject>Rats, Wistar</subject><subject>Receptors, Opioid</subject><subject>RNA, Messenger - metabolism</subject><subject>sex</subject><subject>Spatial Memory - physiology</subject><subject>ΔFosB</subject><subject>μ‐opioid receptor</subject><issn>0736-5748</issn><issn>1873-474X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kL1OwzAURi0EgvIz8ALIIwyhdmw3yYj4RxUMgMQW2c41GCW2sdtCNx6BZ-RJSCmwMd07nO8MB6FdSg4pIfnwuXH9k3Oxgga0LFjGC_6wigakYKNMFLzcQJspPRNChCB8HW2wEa8EFdUAhVt4-3z_SAG0NVZjMAb0JGFvcAMzaH3owE1kizsfw5N1gOEt-DSNgKVrcAQZrXvE4GY2erdg-63DTzYEr2UX-mUKcmIXBugd8220ZmSbYOfnbqH7s9O744tsfHN-eXw0zjTLhciU1jlhleRUNNQYJaAsIZcMRsDKkjeakWLUFIaDUiZXilDFtaykVFSrqmJsC-0vvSH6lymkSd3ZpKFtpQM_TXVeCMYoLUrRowdLVEefUgRTh2g7Gec1JfUicN0Hrr8D9-zej3aqOmj-yN-iPTBcAq-2hfn_pvrq5Hqp_AKbtol0</recordid><startdate>202304</startdate><enddate>202304</enddate><creator>Sarkaki, Alireza</creator><creator>Mard, Seyed Ali</creator><creator>Bakhtiari, Nima</creator><creator>Yazdanfar, Neda</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1259-8735</orcidid></search><sort><creationdate>202304</creationdate><title>Sex‐specific effects of developmental morphine exposure and rearing environments on hippocampal spatial memory</title><author>Sarkaki, Alireza ; Mard, Seyed Ali ; Bakhtiari, Nima ; Yazdanfar, Neda</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3255-bcc2039a415d1ffb5e88e2a3e6e3884dc3076d7f4ebbf2bb01b4ca9aab1cb9933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Animals</topic><topic>Brain-Derived Neurotrophic Factor - genetics</topic><topic>Brain-Derived Neurotrophic Factor - metabolism</topic><topic>CREB</topic><topic>enriched environment</topic><topic>Female</topic><topic>Hippocampus - metabolism</topic><topic>Humans</topic><topic>Male</topic><topic>Maze Learning</topic><topic>morphine</topic><topic>Morphine - pharmacology</topic><topic>Pregnancy</topic><topic>Prenatal Exposure Delayed Effects - metabolism</topic><topic>Rats</topic><topic>Rats, Wistar</topic><topic>Receptors, Opioid</topic><topic>RNA, Messenger - metabolism</topic><topic>sex</topic><topic>Spatial Memory - physiology</topic><topic>ΔFosB</topic><topic>μ‐opioid receptor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sarkaki, Alireza</creatorcontrib><creatorcontrib>Mard, Seyed Ali</creatorcontrib><creatorcontrib>Bakhtiari, Nima</creatorcontrib><creatorcontrib>Yazdanfar, Neda</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>International journal of developmental neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sarkaki, Alireza</au><au>Mard, Seyed Ali</au><au>Bakhtiari, Nima</au><au>Yazdanfar, Neda</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sex‐specific effects of developmental morphine exposure and rearing environments on hippocampal spatial memory</atitle><jtitle>International journal of developmental neuroscience</jtitle><addtitle>Int J Dev Neurosci</addtitle><date>2023-04</date><risdate>2023</risdate><volume>83</volume><issue>2</issue><spage>178</spage><epage>190</epage><pages>178-190</pages><issn>0736-5748</issn><eissn>1873-474X</eissn><abstract>Developmental morphine (MOR) exposure (DME) detrimentally affects the cognitive abilities of the next generation. It is shown that postnatal rearing environments and prenatal conditions effectively impact memory. The present study investigated the effects of DME, postweaning rearing, and sex on spatial learning and memory. At molecular level, we evaluated mRNA levels of brain‐derived neurotrophic factor, cyclic AMP response element‐binding protein (CREB), μ‐opioid receptor, and ΔFosB in the hippocampus of male offspring. Female Wistar rats were treated with escalating doses of MOR or saline before mating, gestation, and lactation. On Postnatal Day 22, the male and female pups were divided into 12 groups and raised for 2 months under different conditions: standard, isolated (ISO), or enriched environment. Afterward, the Morris water maze task measured spatial learning and reference memory; rats were then sacrificed to assess hippocampus gene expressions. Results indicated the DME and isolated rearing increased latency to find the hidden platform in male offspring. DME was insignificant in female offspring, whereas rearing environments significantly altered escape latency in both sexes. We also found that the enriched environment upregulated the brain‐derived neurotrophic factor mRNA in both saline and MOR groups, whereas it downregulated the mRNA levels of CREB1, μ‐opioid receptor, and ΔFosB in the MOR group. In addition, the DME enhanced CREB1, μ‐opioid receptor, and ΔFosB gene expression in the MOR + isolated group. Our findings signified the effects of DME, rearing environment, and sex on the spatial learning abilities of offspring. Also, we showed that DME and rearing conditions could manipulate hippocampal neurochemistry.</abstract><cop>United States</cop><pmid>36495159</pmid><doi>10.1002/jdn.10245</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-1259-8735</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0736-5748
ispartof International journal of developmental neuroscience, 2023-04, Vol.83 (2), p.178-190
issn 0736-5748
1873-474X
language eng
recordid cdi_proquest_miscellaneous_2753311785
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Animals
Brain-Derived Neurotrophic Factor - genetics
Brain-Derived Neurotrophic Factor - metabolism
CREB
enriched environment
Female
Hippocampus - metabolism
Humans
Male
Maze Learning
morphine
Morphine - pharmacology
Pregnancy
Prenatal Exposure Delayed Effects - metabolism
Rats
Rats, Wistar
Receptors, Opioid
RNA, Messenger - metabolism
sex
Spatial Memory - physiology
ΔFosB
μ‐opioid receptor
title Sex‐specific effects of developmental morphine exposure and rearing environments on hippocampal spatial memory
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T15%3A14%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sex%E2%80%90specific%20effects%20of%20developmental%20morphine%20exposure%20and%20rearing%20environments%20on%20hippocampal%20spatial%20memory&rft.jtitle=International%20journal%20of%20developmental%20neuroscience&rft.au=Sarkaki,%20Alireza&rft.date=2023-04&rft.volume=83&rft.issue=2&rft.spage=178&rft.epage=190&rft.pages=178-190&rft.issn=0736-5748&rft.eissn=1873-474X&rft_id=info:doi/10.1002/jdn.10245&rft_dat=%3Cproquest_cross%3E2753311785%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2753311785&rft_id=info:pmid/36495159&rfr_iscdi=true