Further predictive value of lymphovascular invasion explored via supervised deep learning for lymph node metastases in breast cancer

Lymphovascular invasion, specifically lymph-blood vessel invasion (LBVI), is a risk factor for metastases in breast invasive ductal carcinoma (IDC) and is routinely screened using hematoxylin-eosin histopathological images. However, routine reports only describe whether LBVI is present and does not...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Human pathology 2023-01, Vol.131, p.26-37
Hauptverfasser: Chen, Jiamei, Yang, Yang, Luo, Bo, Wen, Yaofeng, Chen, Qingzhong, Ma, Ru, Huang, Zhen, Zhu, Hangjia, Li, Yan, Chen, Yongshun, Qian, Dahong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Lymphovascular invasion, specifically lymph-blood vessel invasion (LBVI), is a risk factor for metastases in breast invasive ductal carcinoma (IDC) and is routinely screened using hematoxylin-eosin histopathological images. However, routine reports only describe whether LBVI is present and does not provide other potential prognostic information of LBVI. This study aims to evaluate the clinical significance of LBVI in 685 IDC cases and explore the added predictive value of LBVI on lymph node metastases (LNM) via supervised deep learning (DL), an expert-experience embedded knowledge transfer learning (EEKT) model in 40 LBVI-positive cases signed by the routine report. Multivariate logistic regression and propensity score matching analysis demonstrated that LBVI (OR 4.203, 95% CI 2.809–6.290, P 
ISSN:0046-8177
1532-8392
DOI:10.1016/j.humpath.2022.11.007