HWA-SegNet: Multi-channel skin lesion image segmentation network with hierarchical analysis and weight adjustment

Convolutional neural networks (CNNs) show excellent performance in accurate medical image segmentation. However, the characteristics of sample with small size and insufficient feature expression, irregular shape of the segmented target and inaccurate judgment of edge texture have always been problem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers in biology and medicine 2023-01, Vol.152, p.106343-106343, Article 106343
Hauptverfasser: Han, Qi, Wang, Hongyi, Hou, Mingyang, Weng, Tengfei, Pei, Yangjun, Li, Zhong, Chen, Guorong, Tian, Yuan, Qiu, Zicheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 106343
container_issue
container_start_page 106343
container_title Computers in biology and medicine
container_volume 152
creator Han, Qi
Wang, Hongyi
Hou, Mingyang
Weng, Tengfei
Pei, Yangjun
Li, Zhong
Chen, Guorong
Tian, Yuan
Qiu, Zicheng
description Convolutional neural networks (CNNs) show excellent performance in accurate medical image segmentation. However, the characteristics of sample with small size and insufficient feature expression, irregular shape of the segmented target and inaccurate judgment of edge texture have always been problems to be faced in the field of skin lesion image segmentation. Therefore, in order to solve these problems, discrete Fourier transform (DFT) is introduced to enrich the input data and a CNN architecture (HWA-SegNet) is proposed in this paper. Firstly, DFT is improved to analyze the features of the skin lesions image, and multi-channel data is extended for each image. Secondly, a hierarchical dilated analysis module is constructed to understand the semantic features under multi-channel. Finally, the pre-prediction results are fine-tuned using a weight adjustment structure with fully connected layers to obtain higher accuracy prediction results. Then, 520 skin lesion images are tested on the ISIC 2018 dataset. Extensive experimental results show that our HWA-SegNet improve the average segmentation Dice Similarity Coefficient from 88.30% to 91.88%, Sensitivity from 89.29% to 92.99%, and Jaccard similarity index from 81.15% to 85.90% compared with U-Net. Compared with the State-of-the-Art method, the Jaccard similarity index and Specificity are close, but the Dice Similarity Coefficient is higher. The experimental data show that the data augmentation strategy based on improved DFT and HWA-SegNet are effective for skin lesion image segmentation.
doi_str_mv 10.1016/j.compbiomed.2022.106343
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2753310668</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010482522010514</els_id><sourcerecordid>2759702413</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-949b339705b0ddc72967399dd359ff15b22034da479ab4723c708f291f5cd2703</originalsourceid><addsrcrecordid>eNqFkUtv1DAUhS0EokPhLyBLbNhk8CtxzK5UlCKVdgGIpeXYNxOneUxth1H_fR2mFRIbVr66_o6v7zkIYUq2lNDqQ7-187hv_DyC2zLCWG5XXPBnaENrqQpScvEcbQihpBA1K0_Qqxh7QoggnLxEJ7wSNZVlvUF3l7_Oiu-wu4b0EX9bhuQL25lpggHHWz_hAaKfJ-xHswMcYTfClExaWxOkwxxu8cGnDnceggm289YM2ExmuI8-5sLhA_hdl7Bx_RLTqn6NXrRmiPDm8TxFPy8-_zi_LK5uvnw9P7sqrCAsFUqohnMlSdkQ56xkqpJcKed4qdqWlg1jhAtnhFSmEZJxK0ndMkXb0jomCT9F74_v7sN8t0BMevTRwjCYCeYlaiZLzrNtVZ3Rd_-g_byEvMUfKv-BCcozVR8pG-YYA7R6H7Iv4V5TotdYdK__xqLXWPQxlix9-zhgada7J-FTDhn4dAQgO_I7m6mj9TBZcD6ATdrN_v9THgDNkKMt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2759702413</pqid></control><display><type>article</type><title>HWA-SegNet: Multi-channel skin lesion image segmentation network with hierarchical analysis and weight adjustment</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Han, Qi ; Wang, Hongyi ; Hou, Mingyang ; Weng, Tengfei ; Pei, Yangjun ; Li, Zhong ; Chen, Guorong ; Tian, Yuan ; Qiu, Zicheng</creator><creatorcontrib>Han, Qi ; Wang, Hongyi ; Hou, Mingyang ; Weng, Tengfei ; Pei, Yangjun ; Li, Zhong ; Chen, Guorong ; Tian, Yuan ; Qiu, Zicheng</creatorcontrib><description>Convolutional neural networks (CNNs) show excellent performance in accurate medical image segmentation. However, the characteristics of sample with small size and insufficient feature expression, irregular shape of the segmented target and inaccurate judgment of edge texture have always been problems to be faced in the field of skin lesion image segmentation. Therefore, in order to solve these problems, discrete Fourier transform (DFT) is introduced to enrich the input data and a CNN architecture (HWA-SegNet) is proposed in this paper. Firstly, DFT is improved to analyze the features of the skin lesions image, and multi-channel data is extended for each image. Secondly, a hierarchical dilated analysis module is constructed to understand the semantic features under multi-channel. Finally, the pre-prediction results are fine-tuned using a weight adjustment structure with fully connected layers to obtain higher accuracy prediction results. Then, 520 skin lesion images are tested on the ISIC 2018 dataset. Extensive experimental results show that our HWA-SegNet improve the average segmentation Dice Similarity Coefficient from 88.30% to 91.88%, Sensitivity from 89.29% to 92.99%, and Jaccard similarity index from 81.15% to 85.90% compared with U-Net. Compared with the State-of-the-Art method, the Jaccard similarity index and Specificity are close, but the Dice Similarity Coefficient is higher. The experimental data show that the data augmentation strategy based on improved DFT and HWA-SegNet are effective for skin lesion image segmentation.</description><identifier>ISSN: 0010-4825</identifier><identifier>EISSN: 1879-0534</identifier><identifier>DOI: 10.1016/j.compbiomed.2022.106343</identifier><identifier>PMID: 36481758</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Artificial neural networks ; Attention mechanism ; Convolutional neural network ; Deep learning ; Fourier transforms ; Humans ; Image processing ; Image Processing, Computer-Assisted - methods ; Image segmentation ; Information technology ; Lesions ; Medical image segmentation ; Medical imaging ; Multi-scale fusion ; Neural networks ; Neural Networks, Computer ; Skin diseases ; Skin Diseases - diagnostic imaging ; Skin lesions ; Skin tests</subject><ispartof>Computers in biology and medicine, 2023-01, Vol.152, p.106343-106343, Article 106343</ispartof><rights>2022 Elsevier Ltd</rights><rights>Copyright © 2022 Elsevier Ltd. All rights reserved.</rights><rights>2022. Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-949b339705b0ddc72967399dd359ff15b22034da479ab4723c708f291f5cd2703</citedby><cites>FETCH-LOGICAL-c402t-949b339705b0ddc72967399dd359ff15b22034da479ab4723c708f291f5cd2703</cites><orcidid>0000-0003-4842-8754</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0010482522010514$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36481758$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Han, Qi</creatorcontrib><creatorcontrib>Wang, Hongyi</creatorcontrib><creatorcontrib>Hou, Mingyang</creatorcontrib><creatorcontrib>Weng, Tengfei</creatorcontrib><creatorcontrib>Pei, Yangjun</creatorcontrib><creatorcontrib>Li, Zhong</creatorcontrib><creatorcontrib>Chen, Guorong</creatorcontrib><creatorcontrib>Tian, Yuan</creatorcontrib><creatorcontrib>Qiu, Zicheng</creatorcontrib><title>HWA-SegNet: Multi-channel skin lesion image segmentation network with hierarchical analysis and weight adjustment</title><title>Computers in biology and medicine</title><addtitle>Comput Biol Med</addtitle><description>Convolutional neural networks (CNNs) show excellent performance in accurate medical image segmentation. However, the characteristics of sample with small size and insufficient feature expression, irregular shape of the segmented target and inaccurate judgment of edge texture have always been problems to be faced in the field of skin lesion image segmentation. Therefore, in order to solve these problems, discrete Fourier transform (DFT) is introduced to enrich the input data and a CNN architecture (HWA-SegNet) is proposed in this paper. Firstly, DFT is improved to analyze the features of the skin lesions image, and multi-channel data is extended for each image. Secondly, a hierarchical dilated analysis module is constructed to understand the semantic features under multi-channel. Finally, the pre-prediction results are fine-tuned using a weight adjustment structure with fully connected layers to obtain higher accuracy prediction results. Then, 520 skin lesion images are tested on the ISIC 2018 dataset. Extensive experimental results show that our HWA-SegNet improve the average segmentation Dice Similarity Coefficient from 88.30% to 91.88%, Sensitivity from 89.29% to 92.99%, and Jaccard similarity index from 81.15% to 85.90% compared with U-Net. Compared with the State-of-the-Art method, the Jaccard similarity index and Specificity are close, but the Dice Similarity Coefficient is higher. The experimental data show that the data augmentation strategy based on improved DFT and HWA-SegNet are effective for skin lesion image segmentation.</description><subject>Artificial neural networks</subject><subject>Attention mechanism</subject><subject>Convolutional neural network</subject><subject>Deep learning</subject><subject>Fourier transforms</subject><subject>Humans</subject><subject>Image processing</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Image segmentation</subject><subject>Information technology</subject><subject>Lesions</subject><subject>Medical image segmentation</subject><subject>Medical imaging</subject><subject>Multi-scale fusion</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Skin diseases</subject><subject>Skin Diseases - diagnostic imaging</subject><subject>Skin lesions</subject><subject>Skin tests</subject><issn>0010-4825</issn><issn>1879-0534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkUtv1DAUhS0EokPhLyBLbNhk8CtxzK5UlCKVdgGIpeXYNxOneUxth1H_fR2mFRIbVr66_o6v7zkIYUq2lNDqQ7-187hv_DyC2zLCWG5XXPBnaENrqQpScvEcbQihpBA1K0_Qqxh7QoggnLxEJ7wSNZVlvUF3l7_Oiu-wu4b0EX9bhuQL25lpggHHWz_hAaKfJ-xHswMcYTfClExaWxOkwxxu8cGnDnceggm289YM2ExmuI8-5sLhA_hdl7Bx_RLTqn6NXrRmiPDm8TxFPy8-_zi_LK5uvnw9P7sqrCAsFUqohnMlSdkQ56xkqpJcKed4qdqWlg1jhAtnhFSmEZJxK0ndMkXb0jomCT9F74_v7sN8t0BMevTRwjCYCeYlaiZLzrNtVZ3Rd_-g_byEvMUfKv-BCcozVR8pG-YYA7R6H7Iv4V5TotdYdK__xqLXWPQxlix9-zhgada7J-FTDhn4dAQgO_I7m6mj9TBZcD6ATdrN_v9THgDNkKMt</recordid><startdate>202301</startdate><enddate>202301</enddate><creator>Han, Qi</creator><creator>Wang, Hongyi</creator><creator>Hou, Mingyang</creator><creator>Weng, Tengfei</creator><creator>Pei, Yangjun</creator><creator>Li, Zhong</creator><creator>Chen, Guorong</creator><creator>Tian, Yuan</creator><creator>Qiu, Zicheng</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>M7Z</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4842-8754</orcidid></search><sort><creationdate>202301</creationdate><title>HWA-SegNet: Multi-channel skin lesion image segmentation network with hierarchical analysis and weight adjustment</title><author>Han, Qi ; Wang, Hongyi ; Hou, Mingyang ; Weng, Tengfei ; Pei, Yangjun ; Li, Zhong ; Chen, Guorong ; Tian, Yuan ; Qiu, Zicheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-949b339705b0ddc72967399dd359ff15b22034da479ab4723c708f291f5cd2703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial neural networks</topic><topic>Attention mechanism</topic><topic>Convolutional neural network</topic><topic>Deep learning</topic><topic>Fourier transforms</topic><topic>Humans</topic><topic>Image processing</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Image segmentation</topic><topic>Information technology</topic><topic>Lesions</topic><topic>Medical image segmentation</topic><topic>Medical imaging</topic><topic>Multi-scale fusion</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Skin diseases</topic><topic>Skin Diseases - diagnostic imaging</topic><topic>Skin lesions</topic><topic>Skin tests</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Qi</creatorcontrib><creatorcontrib>Wang, Hongyi</creatorcontrib><creatorcontrib>Hou, Mingyang</creatorcontrib><creatorcontrib>Weng, Tengfei</creatorcontrib><creatorcontrib>Pei, Yangjun</creatorcontrib><creatorcontrib>Li, Zhong</creatorcontrib><creatorcontrib>Chen, Guorong</creatorcontrib><creatorcontrib>Tian, Yuan</creatorcontrib><creatorcontrib>Qiu, Zicheng</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Biological Sciences</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest research library</collection><collection>Biological Science Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Computers in biology and medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Qi</au><au>Wang, Hongyi</au><au>Hou, Mingyang</au><au>Weng, Tengfei</au><au>Pei, Yangjun</au><au>Li, Zhong</au><au>Chen, Guorong</au><au>Tian, Yuan</au><au>Qiu, Zicheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>HWA-SegNet: Multi-channel skin lesion image segmentation network with hierarchical analysis and weight adjustment</atitle><jtitle>Computers in biology and medicine</jtitle><addtitle>Comput Biol Med</addtitle><date>2023-01</date><risdate>2023</risdate><volume>152</volume><spage>106343</spage><epage>106343</epage><pages>106343-106343</pages><artnum>106343</artnum><issn>0010-4825</issn><eissn>1879-0534</eissn><abstract>Convolutional neural networks (CNNs) show excellent performance in accurate medical image segmentation. However, the characteristics of sample with small size and insufficient feature expression, irregular shape of the segmented target and inaccurate judgment of edge texture have always been problems to be faced in the field of skin lesion image segmentation. Therefore, in order to solve these problems, discrete Fourier transform (DFT) is introduced to enrich the input data and a CNN architecture (HWA-SegNet) is proposed in this paper. Firstly, DFT is improved to analyze the features of the skin lesions image, and multi-channel data is extended for each image. Secondly, a hierarchical dilated analysis module is constructed to understand the semantic features under multi-channel. Finally, the pre-prediction results are fine-tuned using a weight adjustment structure with fully connected layers to obtain higher accuracy prediction results. Then, 520 skin lesion images are tested on the ISIC 2018 dataset. Extensive experimental results show that our HWA-SegNet improve the average segmentation Dice Similarity Coefficient from 88.30% to 91.88%, Sensitivity from 89.29% to 92.99%, and Jaccard similarity index from 81.15% to 85.90% compared with U-Net. Compared with the State-of-the-Art method, the Jaccard similarity index and Specificity are close, but the Dice Similarity Coefficient is higher. The experimental data show that the data augmentation strategy based on improved DFT and HWA-SegNet are effective for skin lesion image segmentation.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>36481758</pmid><doi>10.1016/j.compbiomed.2022.106343</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-4842-8754</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0010-4825
ispartof Computers in biology and medicine, 2023-01, Vol.152, p.106343-106343, Article 106343
issn 0010-4825
1879-0534
language eng
recordid cdi_proquest_miscellaneous_2753310668
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Artificial neural networks
Attention mechanism
Convolutional neural network
Deep learning
Fourier transforms
Humans
Image processing
Image Processing, Computer-Assisted - methods
Image segmentation
Information technology
Lesions
Medical image segmentation
Medical imaging
Multi-scale fusion
Neural networks
Neural Networks, Computer
Skin diseases
Skin Diseases - diagnostic imaging
Skin lesions
Skin tests
title HWA-SegNet: Multi-channel skin lesion image segmentation network with hierarchical analysis and weight adjustment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T12%3A22%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=HWA-SegNet:%20Multi-channel%20skin%20lesion%20image%20segmentation%20network%20with%20hierarchical%20analysis%20and%20weight%20adjustment&rft.jtitle=Computers%20in%20biology%20and%20medicine&rft.au=Han,%20Qi&rft.date=2023-01&rft.volume=152&rft.spage=106343&rft.epage=106343&rft.pages=106343-106343&rft.artnum=106343&rft.issn=0010-4825&rft.eissn=1879-0534&rft_id=info:doi/10.1016/j.compbiomed.2022.106343&rft_dat=%3Cproquest_cross%3E2759702413%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2759702413&rft_id=info:pmid/36481758&rft_els_id=S0010482522010514&rfr_iscdi=true