Mutation in a chlorophyll-binding motif of Brassica ferrochelatase enhances both heme and chlorophyll biosynthesis
The heme branch of tetrapyrrole biosynthesis contributes to the regulation of chlorophyll levels. However, the mechanism underlying the balance between chlorophyll and heme synthesis remains elusive. Here, we identify a dark green leaf mutant, dg, from an ethyl methanesulfonate (EMS)-induced mutant...
Gespeichert in:
Veröffentlicht in: | Cell reports (Cambridge) 2022-12, Vol.41 (10), p.111758-111758, Article 111758 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 111758 |
---|---|
container_issue | 10 |
container_start_page | 111758 |
container_title | Cell reports (Cambridge) |
container_volume | 41 |
creator | Liu, Mengyang Ma, Wei Su, Xiangjie Zhang, Xiaomeng Lu, Yin Zhang, Shaowei Yan, Jinghui Feng, Daling Ma, Lisong Taylor, Aoife Ge, Yunjia Cheng, Qi Xu, Kedong Wang, Yanhua Li, Na Gu, Aixia Zhang, Ju Luo, Shuangxia Xuan, Shuxin Chen, Xueping Scrutton, Nigel S. Li, Chengwei Zhao, Jianjun Shen, Shuxing |
description | The heme branch of tetrapyrrole biosynthesis contributes to the regulation of chlorophyll levels. However, the mechanism underlying the balance between chlorophyll and heme synthesis remains elusive. Here, we identify a dark green leaf mutant, dg, from an ethyl methanesulfonate (EMS)-induced mutant library of Chinese cabbage. The dg phenotype is caused by an amino acid substitution in the conserved chlorophyll a/b-binding motif (CAB) of ferrochelatase 2 (BrFC2). This mutation increases the formation of BrFC2 homodimer to promote heme production. Moreover, wild-type BrFC2 and dBrFC2 interact with protochlorophyllide (Pchlide) oxidoreductase B1 and B2 (BrPORB1 and BrPORB2), and dBrFC2 exhibits higher binding ability to substrate Pchlide, thereby promoting BrPORBs-catalyzed production of chlorophyllide (Chlide), which can be directly converted into chlorophyll. Our results show that dBrFC2 is a gain-of-function mutation contributing to balancing heme and chlorophyll synthesis via a regulatory mechanism in which dBrFC2 promotes BrPORB enzymatic reaction to enhance chlorophyll synthesis.
[Display omitted]
•A nonsynonymous homozygous mutation of BrFC2 results in increased heme and chlorophyll•BrFC2 and mutated dBrFC2 interact with BrPORBs•The mutated dBrFC2 facilitates Pchlide-binding ability to promote chlorophyll synthesis•BrFC2 and BrPORBs coordinately influence chlorophyll and heme biosynthesis
Liu et al. identify a nonsynonymous homozygous mutation of BrFC2 resulting in increased heme and chlorophyll. BrFC2 and mutated dBrFC2 interact with BrPORBs, and the mutated dBrFC2 facilitates Pchlide-binding ability to promote chlorophyll synthesis. dBrFC2 is a “gain-of-function mutation” contributing to the balance between heme and chlorophyll synthesis. |
doi_str_mv | 10.1016/j.celrep.2022.111758 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2753302597</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2211124722016412</els_id><sourcerecordid>2753302597</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-6f2a86c612e352452b95c585dc93fffdb73b38b0c8feb22a079079b2538243ad3</originalsourceid><addsrcrecordid>eNp9kF9LHTEQxYO0qFi_gUge-7LXZLLZPy-ClVYLlr7U55BkJ24uu8k1yS3cb9-VVfGpw8DMwzlzmB8hF5xtOOPN1XZjcUq42wAD2HDOW9kdkVMAzisOdfvpw35CznPesqUaxnlfH5MT0dRt08n2lKRf-6KLj4H6QDW14xRT3I2HaaqMD4MPT3SOxTsaHf2WdM7eauowpWhHnHTRGSmGUQeLmZpYRjrijFSH4eMtanzMh1BGzD5_IZ-dnjKev84z8vjj-5_b--rh993P25uHyooGStU40F1jGw4oJNQSTC-t7ORge-GcG0wrjOgMs51DA6BZ2y9tQIoOaqEHcUa-rnd3KT7vMRc1-7xgm3TAuM8KWikEA9m3i7RepTbFnBM6tUt-1umgOFMvwNVWrcDVC3C1Al9sl68JezPj8G56w7sIrlcBLn_-9ZhUth4XVoNPaIsaov9_wj_7gpTY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2753302597</pqid></control><display><type>article</type><title>Mutation in a chlorophyll-binding motif of Brassica ferrochelatase enhances both heme and chlorophyll biosynthesis</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Cell Press Free Archives</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Liu, Mengyang ; Ma, Wei ; Su, Xiangjie ; Zhang, Xiaomeng ; Lu, Yin ; Zhang, Shaowei ; Yan, Jinghui ; Feng, Daling ; Ma, Lisong ; Taylor, Aoife ; Ge, Yunjia ; Cheng, Qi ; Xu, Kedong ; Wang, Yanhua ; Li, Na ; Gu, Aixia ; Zhang, Ju ; Luo, Shuangxia ; Xuan, Shuxin ; Chen, Xueping ; Scrutton, Nigel S. ; Li, Chengwei ; Zhao, Jianjun ; Shen, Shuxing</creator><creatorcontrib>Liu, Mengyang ; Ma, Wei ; Su, Xiangjie ; Zhang, Xiaomeng ; Lu, Yin ; Zhang, Shaowei ; Yan, Jinghui ; Feng, Daling ; Ma, Lisong ; Taylor, Aoife ; Ge, Yunjia ; Cheng, Qi ; Xu, Kedong ; Wang, Yanhua ; Li, Na ; Gu, Aixia ; Zhang, Ju ; Luo, Shuangxia ; Xuan, Shuxin ; Chen, Xueping ; Scrutton, Nigel S. ; Li, Chengwei ; Zhao, Jianjun ; Shen, Shuxing</creatorcontrib><description>The heme branch of tetrapyrrole biosynthesis contributes to the regulation of chlorophyll levels. However, the mechanism underlying the balance between chlorophyll and heme synthesis remains elusive. Here, we identify a dark green leaf mutant, dg, from an ethyl methanesulfonate (EMS)-induced mutant library of Chinese cabbage. The dg phenotype is caused by an amino acid substitution in the conserved chlorophyll a/b-binding motif (CAB) of ferrochelatase 2 (BrFC2). This mutation increases the formation of BrFC2 homodimer to promote heme production. Moreover, wild-type BrFC2 and dBrFC2 interact with protochlorophyllide (Pchlide) oxidoreductase B1 and B2 (BrPORB1 and BrPORB2), and dBrFC2 exhibits higher binding ability to substrate Pchlide, thereby promoting BrPORBs-catalyzed production of chlorophyllide (Chlide), which can be directly converted into chlorophyll. Our results show that dBrFC2 is a gain-of-function mutation contributing to balancing heme and chlorophyll synthesis via a regulatory mechanism in which dBrFC2 promotes BrPORB enzymatic reaction to enhance chlorophyll synthesis.
[Display omitted]
•A nonsynonymous homozygous mutation of BrFC2 results in increased heme and chlorophyll•BrFC2 and mutated dBrFC2 interact with BrPORBs•The mutated dBrFC2 facilitates Pchlide-binding ability to promote chlorophyll synthesis•BrFC2 and BrPORBs coordinately influence chlorophyll and heme biosynthesis
Liu et al. identify a nonsynonymous homozygous mutation of BrFC2 resulting in increased heme and chlorophyll. BrFC2 and mutated dBrFC2 interact with BrPORBs, and the mutated dBrFC2 facilitates Pchlide-binding ability to promote chlorophyll synthesis. dBrFC2 is a “gain-of-function mutation” contributing to the balance between heme and chlorophyll synthesis.</description><identifier>ISSN: 2211-1247</identifier><identifier>EISSN: 2211-1247</identifier><identifier>DOI: 10.1016/j.celrep.2022.111758</identifier><identifier>PMID: 36476857</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Brassica - genetics ; Chinese cabbage ; Chlorophyll A ; dark green mutant ; Ferrochelatase - genetics ; ferrochelatase 2 ; Heme ; Mutation - genetics ; protochlorophyllide oxidoreductase B</subject><ispartof>Cell reports (Cambridge), 2022-12, Vol.41 (10), p.111758-111758, Article 111758</ispartof><rights>2022 The Author(s)</rights><rights>Copyright © 2022 The Author(s). Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-6f2a86c612e352452b95c585dc93fffdb73b38b0c8feb22a079079b2538243ad3</citedby><cites>FETCH-LOGICAL-c362t-6f2a86c612e352452b95c585dc93fffdb73b38b0c8feb22a079079b2538243ad3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36476857$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Mengyang</creatorcontrib><creatorcontrib>Ma, Wei</creatorcontrib><creatorcontrib>Su, Xiangjie</creatorcontrib><creatorcontrib>Zhang, Xiaomeng</creatorcontrib><creatorcontrib>Lu, Yin</creatorcontrib><creatorcontrib>Zhang, Shaowei</creatorcontrib><creatorcontrib>Yan, Jinghui</creatorcontrib><creatorcontrib>Feng, Daling</creatorcontrib><creatorcontrib>Ma, Lisong</creatorcontrib><creatorcontrib>Taylor, Aoife</creatorcontrib><creatorcontrib>Ge, Yunjia</creatorcontrib><creatorcontrib>Cheng, Qi</creatorcontrib><creatorcontrib>Xu, Kedong</creatorcontrib><creatorcontrib>Wang, Yanhua</creatorcontrib><creatorcontrib>Li, Na</creatorcontrib><creatorcontrib>Gu, Aixia</creatorcontrib><creatorcontrib>Zhang, Ju</creatorcontrib><creatorcontrib>Luo, Shuangxia</creatorcontrib><creatorcontrib>Xuan, Shuxin</creatorcontrib><creatorcontrib>Chen, Xueping</creatorcontrib><creatorcontrib>Scrutton, Nigel S.</creatorcontrib><creatorcontrib>Li, Chengwei</creatorcontrib><creatorcontrib>Zhao, Jianjun</creatorcontrib><creatorcontrib>Shen, Shuxing</creatorcontrib><title>Mutation in a chlorophyll-binding motif of Brassica ferrochelatase enhances both heme and chlorophyll biosynthesis</title><title>Cell reports (Cambridge)</title><addtitle>Cell Rep</addtitle><description>The heme branch of tetrapyrrole biosynthesis contributes to the regulation of chlorophyll levels. However, the mechanism underlying the balance between chlorophyll and heme synthesis remains elusive. Here, we identify a dark green leaf mutant, dg, from an ethyl methanesulfonate (EMS)-induced mutant library of Chinese cabbage. The dg phenotype is caused by an amino acid substitution in the conserved chlorophyll a/b-binding motif (CAB) of ferrochelatase 2 (BrFC2). This mutation increases the formation of BrFC2 homodimer to promote heme production. Moreover, wild-type BrFC2 and dBrFC2 interact with protochlorophyllide (Pchlide) oxidoreductase B1 and B2 (BrPORB1 and BrPORB2), and dBrFC2 exhibits higher binding ability to substrate Pchlide, thereby promoting BrPORBs-catalyzed production of chlorophyllide (Chlide), which can be directly converted into chlorophyll. Our results show that dBrFC2 is a gain-of-function mutation contributing to balancing heme and chlorophyll synthesis via a regulatory mechanism in which dBrFC2 promotes BrPORB enzymatic reaction to enhance chlorophyll synthesis.
[Display omitted]
•A nonsynonymous homozygous mutation of BrFC2 results in increased heme and chlorophyll•BrFC2 and mutated dBrFC2 interact with BrPORBs•The mutated dBrFC2 facilitates Pchlide-binding ability to promote chlorophyll synthesis•BrFC2 and BrPORBs coordinately influence chlorophyll and heme biosynthesis
Liu et al. identify a nonsynonymous homozygous mutation of BrFC2 resulting in increased heme and chlorophyll. BrFC2 and mutated dBrFC2 interact with BrPORBs, and the mutated dBrFC2 facilitates Pchlide-binding ability to promote chlorophyll synthesis. dBrFC2 is a “gain-of-function mutation” contributing to the balance between heme and chlorophyll synthesis.</description><subject>Brassica - genetics</subject><subject>Chinese cabbage</subject><subject>Chlorophyll A</subject><subject>dark green mutant</subject><subject>Ferrochelatase - genetics</subject><subject>ferrochelatase 2</subject><subject>Heme</subject><subject>Mutation - genetics</subject><subject>protochlorophyllide oxidoreductase B</subject><issn>2211-1247</issn><issn>2211-1247</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kF9LHTEQxYO0qFi_gUge-7LXZLLZPy-ClVYLlr7U55BkJ24uu8k1yS3cb9-VVfGpw8DMwzlzmB8hF5xtOOPN1XZjcUq42wAD2HDOW9kdkVMAzisOdfvpw35CznPesqUaxnlfH5MT0dRt08n2lKRf-6KLj4H6QDW14xRT3I2HaaqMD4MPT3SOxTsaHf2WdM7eauowpWhHnHTRGSmGUQeLmZpYRjrijFSH4eMtanzMh1BGzD5_IZ-dnjKev84z8vjj-5_b--rh993P25uHyooGStU40F1jGw4oJNQSTC-t7ORge-GcG0wrjOgMs51DA6BZ2y9tQIoOaqEHcUa-rnd3KT7vMRc1-7xgm3TAuM8KWikEA9m3i7RepTbFnBM6tUt-1umgOFMvwNVWrcDVC3C1Al9sl68JezPj8G56w7sIrlcBLn_-9ZhUth4XVoNPaIsaov9_wj_7gpTY</recordid><startdate>20221206</startdate><enddate>20221206</enddate><creator>Liu, Mengyang</creator><creator>Ma, Wei</creator><creator>Su, Xiangjie</creator><creator>Zhang, Xiaomeng</creator><creator>Lu, Yin</creator><creator>Zhang, Shaowei</creator><creator>Yan, Jinghui</creator><creator>Feng, Daling</creator><creator>Ma, Lisong</creator><creator>Taylor, Aoife</creator><creator>Ge, Yunjia</creator><creator>Cheng, Qi</creator><creator>Xu, Kedong</creator><creator>Wang, Yanhua</creator><creator>Li, Na</creator><creator>Gu, Aixia</creator><creator>Zhang, Ju</creator><creator>Luo, Shuangxia</creator><creator>Xuan, Shuxin</creator><creator>Chen, Xueping</creator><creator>Scrutton, Nigel S.</creator><creator>Li, Chengwei</creator><creator>Zhao, Jianjun</creator><creator>Shen, Shuxing</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20221206</creationdate><title>Mutation in a chlorophyll-binding motif of Brassica ferrochelatase enhances both heme and chlorophyll biosynthesis</title><author>Liu, Mengyang ; Ma, Wei ; Su, Xiangjie ; Zhang, Xiaomeng ; Lu, Yin ; Zhang, Shaowei ; Yan, Jinghui ; Feng, Daling ; Ma, Lisong ; Taylor, Aoife ; Ge, Yunjia ; Cheng, Qi ; Xu, Kedong ; Wang, Yanhua ; Li, Na ; Gu, Aixia ; Zhang, Ju ; Luo, Shuangxia ; Xuan, Shuxin ; Chen, Xueping ; Scrutton, Nigel S. ; Li, Chengwei ; Zhao, Jianjun ; Shen, Shuxing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-6f2a86c612e352452b95c585dc93fffdb73b38b0c8feb22a079079b2538243ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Brassica - genetics</topic><topic>Chinese cabbage</topic><topic>Chlorophyll A</topic><topic>dark green mutant</topic><topic>Ferrochelatase - genetics</topic><topic>ferrochelatase 2</topic><topic>Heme</topic><topic>Mutation - genetics</topic><topic>protochlorophyllide oxidoreductase B</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Mengyang</creatorcontrib><creatorcontrib>Ma, Wei</creatorcontrib><creatorcontrib>Su, Xiangjie</creatorcontrib><creatorcontrib>Zhang, Xiaomeng</creatorcontrib><creatorcontrib>Lu, Yin</creatorcontrib><creatorcontrib>Zhang, Shaowei</creatorcontrib><creatorcontrib>Yan, Jinghui</creatorcontrib><creatorcontrib>Feng, Daling</creatorcontrib><creatorcontrib>Ma, Lisong</creatorcontrib><creatorcontrib>Taylor, Aoife</creatorcontrib><creatorcontrib>Ge, Yunjia</creatorcontrib><creatorcontrib>Cheng, Qi</creatorcontrib><creatorcontrib>Xu, Kedong</creatorcontrib><creatorcontrib>Wang, Yanhua</creatorcontrib><creatorcontrib>Li, Na</creatorcontrib><creatorcontrib>Gu, Aixia</creatorcontrib><creatorcontrib>Zhang, Ju</creatorcontrib><creatorcontrib>Luo, Shuangxia</creatorcontrib><creatorcontrib>Xuan, Shuxin</creatorcontrib><creatorcontrib>Chen, Xueping</creatorcontrib><creatorcontrib>Scrutton, Nigel S.</creatorcontrib><creatorcontrib>Li, Chengwei</creatorcontrib><creatorcontrib>Zhao, Jianjun</creatorcontrib><creatorcontrib>Shen, Shuxing</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Cell reports (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Mengyang</au><au>Ma, Wei</au><au>Su, Xiangjie</au><au>Zhang, Xiaomeng</au><au>Lu, Yin</au><au>Zhang, Shaowei</au><au>Yan, Jinghui</au><au>Feng, Daling</au><au>Ma, Lisong</au><au>Taylor, Aoife</au><au>Ge, Yunjia</au><au>Cheng, Qi</au><au>Xu, Kedong</au><au>Wang, Yanhua</au><au>Li, Na</au><au>Gu, Aixia</au><au>Zhang, Ju</au><au>Luo, Shuangxia</au><au>Xuan, Shuxin</au><au>Chen, Xueping</au><au>Scrutton, Nigel S.</au><au>Li, Chengwei</au><au>Zhao, Jianjun</au><au>Shen, Shuxing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mutation in a chlorophyll-binding motif of Brassica ferrochelatase enhances both heme and chlorophyll biosynthesis</atitle><jtitle>Cell reports (Cambridge)</jtitle><addtitle>Cell Rep</addtitle><date>2022-12-06</date><risdate>2022</risdate><volume>41</volume><issue>10</issue><spage>111758</spage><epage>111758</epage><pages>111758-111758</pages><artnum>111758</artnum><issn>2211-1247</issn><eissn>2211-1247</eissn><abstract>The heme branch of tetrapyrrole biosynthesis contributes to the regulation of chlorophyll levels. However, the mechanism underlying the balance between chlorophyll and heme synthesis remains elusive. Here, we identify a dark green leaf mutant, dg, from an ethyl methanesulfonate (EMS)-induced mutant library of Chinese cabbage. The dg phenotype is caused by an amino acid substitution in the conserved chlorophyll a/b-binding motif (CAB) of ferrochelatase 2 (BrFC2). This mutation increases the formation of BrFC2 homodimer to promote heme production. Moreover, wild-type BrFC2 and dBrFC2 interact with protochlorophyllide (Pchlide) oxidoreductase B1 and B2 (BrPORB1 and BrPORB2), and dBrFC2 exhibits higher binding ability to substrate Pchlide, thereby promoting BrPORBs-catalyzed production of chlorophyllide (Chlide), which can be directly converted into chlorophyll. Our results show that dBrFC2 is a gain-of-function mutation contributing to balancing heme and chlorophyll synthesis via a regulatory mechanism in which dBrFC2 promotes BrPORB enzymatic reaction to enhance chlorophyll synthesis.
[Display omitted]
•A nonsynonymous homozygous mutation of BrFC2 results in increased heme and chlorophyll•BrFC2 and mutated dBrFC2 interact with BrPORBs•The mutated dBrFC2 facilitates Pchlide-binding ability to promote chlorophyll synthesis•BrFC2 and BrPORBs coordinately influence chlorophyll and heme biosynthesis
Liu et al. identify a nonsynonymous homozygous mutation of BrFC2 resulting in increased heme and chlorophyll. BrFC2 and mutated dBrFC2 interact with BrPORBs, and the mutated dBrFC2 facilitates Pchlide-binding ability to promote chlorophyll synthesis. dBrFC2 is a “gain-of-function mutation” contributing to the balance between heme and chlorophyll synthesis.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>36476857</pmid><doi>10.1016/j.celrep.2022.111758</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2211-1247 |
ispartof | Cell reports (Cambridge), 2022-12, Vol.41 (10), p.111758-111758, Article 111758 |
issn | 2211-1247 2211-1247 |
language | eng |
recordid | cdi_proquest_miscellaneous_2753302597 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Cell Press Free Archives; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | Brassica - genetics Chinese cabbage Chlorophyll A dark green mutant Ferrochelatase - genetics ferrochelatase 2 Heme Mutation - genetics protochlorophyllide oxidoreductase B |
title | Mutation in a chlorophyll-binding motif of Brassica ferrochelatase enhances both heme and chlorophyll biosynthesis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T03%3A05%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mutation%20in%20a%20chlorophyll-binding%20motif%20of%20Brassica%20ferrochelatase%20enhances%20both%20heme%20and%20chlorophyll%20biosynthesis&rft.jtitle=Cell%20reports%20(Cambridge)&rft.au=Liu,%20Mengyang&rft.date=2022-12-06&rft.volume=41&rft.issue=10&rft.spage=111758&rft.epage=111758&rft.pages=111758-111758&rft.artnum=111758&rft.issn=2211-1247&rft.eissn=2211-1247&rft_id=info:doi/10.1016/j.celrep.2022.111758&rft_dat=%3Cproquest_cross%3E2753302597%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2753302597&rft_id=info:pmid/36476857&rft_els_id=S2211124722016412&rfr_iscdi=true |