Mutation in a chlorophyll-binding motif of Brassica ferrochelatase enhances both heme and chlorophyll biosynthesis

The heme branch of tetrapyrrole biosynthesis contributes to the regulation of chlorophyll levels. However, the mechanism underlying the balance between chlorophyll and heme synthesis remains elusive. Here, we identify a dark green leaf mutant, dg, from an ethyl methanesulfonate (EMS)-induced mutant...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell reports (Cambridge) 2022-12, Vol.41 (10), p.111758-111758, Article 111758
Hauptverfasser: Liu, Mengyang, Ma, Wei, Su, Xiangjie, Zhang, Xiaomeng, Lu, Yin, Zhang, Shaowei, Yan, Jinghui, Feng, Daling, Ma, Lisong, Taylor, Aoife, Ge, Yunjia, Cheng, Qi, Xu, Kedong, Wang, Yanhua, Li, Na, Gu, Aixia, Zhang, Ju, Luo, Shuangxia, Xuan, Shuxin, Chen, Xueping, Scrutton, Nigel S., Li, Chengwei, Zhao, Jianjun, Shen, Shuxing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 111758
container_issue 10
container_start_page 111758
container_title Cell reports (Cambridge)
container_volume 41
creator Liu, Mengyang
Ma, Wei
Su, Xiangjie
Zhang, Xiaomeng
Lu, Yin
Zhang, Shaowei
Yan, Jinghui
Feng, Daling
Ma, Lisong
Taylor, Aoife
Ge, Yunjia
Cheng, Qi
Xu, Kedong
Wang, Yanhua
Li, Na
Gu, Aixia
Zhang, Ju
Luo, Shuangxia
Xuan, Shuxin
Chen, Xueping
Scrutton, Nigel S.
Li, Chengwei
Zhao, Jianjun
Shen, Shuxing
description The heme branch of tetrapyrrole biosynthesis contributes to the regulation of chlorophyll levels. However, the mechanism underlying the balance between chlorophyll and heme synthesis remains elusive. Here, we identify a dark green leaf mutant, dg, from an ethyl methanesulfonate (EMS)-induced mutant library of Chinese cabbage. The dg phenotype is caused by an amino acid substitution in the conserved chlorophyll a/b-binding motif (CAB) of ferrochelatase 2 (BrFC2). This mutation increases the formation of BrFC2 homodimer to promote heme production. Moreover, wild-type BrFC2 and dBrFC2 interact with protochlorophyllide (Pchlide) oxidoreductase B1 and B2 (BrPORB1 and BrPORB2), and dBrFC2 exhibits higher binding ability to substrate Pchlide, thereby promoting BrPORBs-catalyzed production of chlorophyllide (Chlide), which can be directly converted into chlorophyll. Our results show that dBrFC2 is a gain-of-function mutation contributing to balancing heme and chlorophyll synthesis via a regulatory mechanism in which dBrFC2 promotes BrPORB enzymatic reaction to enhance chlorophyll synthesis. [Display omitted] •A nonsynonymous homozygous mutation of BrFC2 results in increased heme and chlorophyll•BrFC2 and mutated dBrFC2 interact with BrPORBs•The mutated dBrFC2 facilitates Pchlide-binding ability to promote chlorophyll synthesis•BrFC2 and BrPORBs coordinately influence chlorophyll and heme biosynthesis Liu et al. identify a nonsynonymous homozygous mutation of BrFC2 resulting in increased heme and chlorophyll. BrFC2 and mutated dBrFC2 interact with BrPORBs, and the mutated dBrFC2 facilitates Pchlide-binding ability to promote chlorophyll synthesis. dBrFC2 is a “gain-of-function mutation” contributing to the balance between heme and chlorophyll synthesis.
doi_str_mv 10.1016/j.celrep.2022.111758
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2753302597</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2211124722016412</els_id><sourcerecordid>2753302597</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-6f2a86c612e352452b95c585dc93fffdb73b38b0c8feb22a079079b2538243ad3</originalsourceid><addsrcrecordid>eNp9kF9LHTEQxYO0qFi_gUge-7LXZLLZPy-ClVYLlr7U55BkJ24uu8k1yS3cb9-VVfGpw8DMwzlzmB8hF5xtOOPN1XZjcUq42wAD2HDOW9kdkVMAzisOdfvpw35CznPesqUaxnlfH5MT0dRt08n2lKRf-6KLj4H6QDW14xRT3I2HaaqMD4MPT3SOxTsaHf2WdM7eauowpWhHnHTRGSmGUQeLmZpYRjrijFSH4eMtanzMh1BGzD5_IZ-dnjKev84z8vjj-5_b--rh993P25uHyooGStU40F1jGw4oJNQSTC-t7ORge-GcG0wrjOgMs51DA6BZ2y9tQIoOaqEHcUa-rnd3KT7vMRc1-7xgm3TAuM8KWikEA9m3i7RepTbFnBM6tUt-1umgOFMvwNVWrcDVC3C1Al9sl68JezPj8G56w7sIrlcBLn_-9ZhUth4XVoNPaIsaov9_wj_7gpTY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2753302597</pqid></control><display><type>article</type><title>Mutation in a chlorophyll-binding motif of Brassica ferrochelatase enhances both heme and chlorophyll biosynthesis</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Cell Press Free Archives</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Liu, Mengyang ; Ma, Wei ; Su, Xiangjie ; Zhang, Xiaomeng ; Lu, Yin ; Zhang, Shaowei ; Yan, Jinghui ; Feng, Daling ; Ma, Lisong ; Taylor, Aoife ; Ge, Yunjia ; Cheng, Qi ; Xu, Kedong ; Wang, Yanhua ; Li, Na ; Gu, Aixia ; Zhang, Ju ; Luo, Shuangxia ; Xuan, Shuxin ; Chen, Xueping ; Scrutton, Nigel S. ; Li, Chengwei ; Zhao, Jianjun ; Shen, Shuxing</creator><creatorcontrib>Liu, Mengyang ; Ma, Wei ; Su, Xiangjie ; Zhang, Xiaomeng ; Lu, Yin ; Zhang, Shaowei ; Yan, Jinghui ; Feng, Daling ; Ma, Lisong ; Taylor, Aoife ; Ge, Yunjia ; Cheng, Qi ; Xu, Kedong ; Wang, Yanhua ; Li, Na ; Gu, Aixia ; Zhang, Ju ; Luo, Shuangxia ; Xuan, Shuxin ; Chen, Xueping ; Scrutton, Nigel S. ; Li, Chengwei ; Zhao, Jianjun ; Shen, Shuxing</creatorcontrib><description>The heme branch of tetrapyrrole biosynthesis contributes to the regulation of chlorophyll levels. However, the mechanism underlying the balance between chlorophyll and heme synthesis remains elusive. Here, we identify a dark green leaf mutant, dg, from an ethyl methanesulfonate (EMS)-induced mutant library of Chinese cabbage. The dg phenotype is caused by an amino acid substitution in the conserved chlorophyll a/b-binding motif (CAB) of ferrochelatase 2 (BrFC2). This mutation increases the formation of BrFC2 homodimer to promote heme production. Moreover, wild-type BrFC2 and dBrFC2 interact with protochlorophyllide (Pchlide) oxidoreductase B1 and B2 (BrPORB1 and BrPORB2), and dBrFC2 exhibits higher binding ability to substrate Pchlide, thereby promoting BrPORBs-catalyzed production of chlorophyllide (Chlide), which can be directly converted into chlorophyll. Our results show that dBrFC2 is a gain-of-function mutation contributing to balancing heme and chlorophyll synthesis via a regulatory mechanism in which dBrFC2 promotes BrPORB enzymatic reaction to enhance chlorophyll synthesis. [Display omitted] •A nonsynonymous homozygous mutation of BrFC2 results in increased heme and chlorophyll•BrFC2 and mutated dBrFC2 interact with BrPORBs•The mutated dBrFC2 facilitates Pchlide-binding ability to promote chlorophyll synthesis•BrFC2 and BrPORBs coordinately influence chlorophyll and heme biosynthesis Liu et al. identify a nonsynonymous homozygous mutation of BrFC2 resulting in increased heme and chlorophyll. BrFC2 and mutated dBrFC2 interact with BrPORBs, and the mutated dBrFC2 facilitates Pchlide-binding ability to promote chlorophyll synthesis. dBrFC2 is a “gain-of-function mutation” contributing to the balance between heme and chlorophyll synthesis.</description><identifier>ISSN: 2211-1247</identifier><identifier>EISSN: 2211-1247</identifier><identifier>DOI: 10.1016/j.celrep.2022.111758</identifier><identifier>PMID: 36476857</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Brassica - genetics ; Chinese cabbage ; Chlorophyll A ; dark green mutant ; Ferrochelatase - genetics ; ferrochelatase 2 ; Heme ; Mutation - genetics ; protochlorophyllide oxidoreductase B</subject><ispartof>Cell reports (Cambridge), 2022-12, Vol.41 (10), p.111758-111758, Article 111758</ispartof><rights>2022 The Author(s)</rights><rights>Copyright © 2022 The Author(s). Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-6f2a86c612e352452b95c585dc93fffdb73b38b0c8feb22a079079b2538243ad3</citedby><cites>FETCH-LOGICAL-c362t-6f2a86c612e352452b95c585dc93fffdb73b38b0c8feb22a079079b2538243ad3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36476857$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Mengyang</creatorcontrib><creatorcontrib>Ma, Wei</creatorcontrib><creatorcontrib>Su, Xiangjie</creatorcontrib><creatorcontrib>Zhang, Xiaomeng</creatorcontrib><creatorcontrib>Lu, Yin</creatorcontrib><creatorcontrib>Zhang, Shaowei</creatorcontrib><creatorcontrib>Yan, Jinghui</creatorcontrib><creatorcontrib>Feng, Daling</creatorcontrib><creatorcontrib>Ma, Lisong</creatorcontrib><creatorcontrib>Taylor, Aoife</creatorcontrib><creatorcontrib>Ge, Yunjia</creatorcontrib><creatorcontrib>Cheng, Qi</creatorcontrib><creatorcontrib>Xu, Kedong</creatorcontrib><creatorcontrib>Wang, Yanhua</creatorcontrib><creatorcontrib>Li, Na</creatorcontrib><creatorcontrib>Gu, Aixia</creatorcontrib><creatorcontrib>Zhang, Ju</creatorcontrib><creatorcontrib>Luo, Shuangxia</creatorcontrib><creatorcontrib>Xuan, Shuxin</creatorcontrib><creatorcontrib>Chen, Xueping</creatorcontrib><creatorcontrib>Scrutton, Nigel S.</creatorcontrib><creatorcontrib>Li, Chengwei</creatorcontrib><creatorcontrib>Zhao, Jianjun</creatorcontrib><creatorcontrib>Shen, Shuxing</creatorcontrib><title>Mutation in a chlorophyll-binding motif of Brassica ferrochelatase enhances both heme and chlorophyll biosynthesis</title><title>Cell reports (Cambridge)</title><addtitle>Cell Rep</addtitle><description>The heme branch of tetrapyrrole biosynthesis contributes to the regulation of chlorophyll levels. However, the mechanism underlying the balance between chlorophyll and heme synthesis remains elusive. Here, we identify a dark green leaf mutant, dg, from an ethyl methanesulfonate (EMS)-induced mutant library of Chinese cabbage. The dg phenotype is caused by an amino acid substitution in the conserved chlorophyll a/b-binding motif (CAB) of ferrochelatase 2 (BrFC2). This mutation increases the formation of BrFC2 homodimer to promote heme production. Moreover, wild-type BrFC2 and dBrFC2 interact with protochlorophyllide (Pchlide) oxidoreductase B1 and B2 (BrPORB1 and BrPORB2), and dBrFC2 exhibits higher binding ability to substrate Pchlide, thereby promoting BrPORBs-catalyzed production of chlorophyllide (Chlide), which can be directly converted into chlorophyll. Our results show that dBrFC2 is a gain-of-function mutation contributing to balancing heme and chlorophyll synthesis via a regulatory mechanism in which dBrFC2 promotes BrPORB enzymatic reaction to enhance chlorophyll synthesis. [Display omitted] •A nonsynonymous homozygous mutation of BrFC2 results in increased heme and chlorophyll•BrFC2 and mutated dBrFC2 interact with BrPORBs•The mutated dBrFC2 facilitates Pchlide-binding ability to promote chlorophyll synthesis•BrFC2 and BrPORBs coordinately influence chlorophyll and heme biosynthesis Liu et al. identify a nonsynonymous homozygous mutation of BrFC2 resulting in increased heme and chlorophyll. BrFC2 and mutated dBrFC2 interact with BrPORBs, and the mutated dBrFC2 facilitates Pchlide-binding ability to promote chlorophyll synthesis. dBrFC2 is a “gain-of-function mutation” contributing to the balance between heme and chlorophyll synthesis.</description><subject>Brassica - genetics</subject><subject>Chinese cabbage</subject><subject>Chlorophyll A</subject><subject>dark green mutant</subject><subject>Ferrochelatase - genetics</subject><subject>ferrochelatase 2</subject><subject>Heme</subject><subject>Mutation - genetics</subject><subject>protochlorophyllide oxidoreductase B</subject><issn>2211-1247</issn><issn>2211-1247</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kF9LHTEQxYO0qFi_gUge-7LXZLLZPy-ClVYLlr7U55BkJ24uu8k1yS3cb9-VVfGpw8DMwzlzmB8hF5xtOOPN1XZjcUq42wAD2HDOW9kdkVMAzisOdfvpw35CznPesqUaxnlfH5MT0dRt08n2lKRf-6KLj4H6QDW14xRT3I2HaaqMD4MPT3SOxTsaHf2WdM7eauowpWhHnHTRGSmGUQeLmZpYRjrijFSH4eMtanzMh1BGzD5_IZ-dnjKev84z8vjj-5_b--rh993P25uHyooGStU40F1jGw4oJNQSTC-t7ORge-GcG0wrjOgMs51DA6BZ2y9tQIoOaqEHcUa-rnd3KT7vMRc1-7xgm3TAuM8KWikEA9m3i7RepTbFnBM6tUt-1umgOFMvwNVWrcDVC3C1Al9sl68JezPj8G56w7sIrlcBLn_-9ZhUth4XVoNPaIsaov9_wj_7gpTY</recordid><startdate>20221206</startdate><enddate>20221206</enddate><creator>Liu, Mengyang</creator><creator>Ma, Wei</creator><creator>Su, Xiangjie</creator><creator>Zhang, Xiaomeng</creator><creator>Lu, Yin</creator><creator>Zhang, Shaowei</creator><creator>Yan, Jinghui</creator><creator>Feng, Daling</creator><creator>Ma, Lisong</creator><creator>Taylor, Aoife</creator><creator>Ge, Yunjia</creator><creator>Cheng, Qi</creator><creator>Xu, Kedong</creator><creator>Wang, Yanhua</creator><creator>Li, Na</creator><creator>Gu, Aixia</creator><creator>Zhang, Ju</creator><creator>Luo, Shuangxia</creator><creator>Xuan, Shuxin</creator><creator>Chen, Xueping</creator><creator>Scrutton, Nigel S.</creator><creator>Li, Chengwei</creator><creator>Zhao, Jianjun</creator><creator>Shen, Shuxing</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20221206</creationdate><title>Mutation in a chlorophyll-binding motif of Brassica ferrochelatase enhances both heme and chlorophyll biosynthesis</title><author>Liu, Mengyang ; Ma, Wei ; Su, Xiangjie ; Zhang, Xiaomeng ; Lu, Yin ; Zhang, Shaowei ; Yan, Jinghui ; Feng, Daling ; Ma, Lisong ; Taylor, Aoife ; Ge, Yunjia ; Cheng, Qi ; Xu, Kedong ; Wang, Yanhua ; Li, Na ; Gu, Aixia ; Zhang, Ju ; Luo, Shuangxia ; Xuan, Shuxin ; Chen, Xueping ; Scrutton, Nigel S. ; Li, Chengwei ; Zhao, Jianjun ; Shen, Shuxing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-6f2a86c612e352452b95c585dc93fffdb73b38b0c8feb22a079079b2538243ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Brassica - genetics</topic><topic>Chinese cabbage</topic><topic>Chlorophyll A</topic><topic>dark green mutant</topic><topic>Ferrochelatase - genetics</topic><topic>ferrochelatase 2</topic><topic>Heme</topic><topic>Mutation - genetics</topic><topic>protochlorophyllide oxidoreductase B</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Mengyang</creatorcontrib><creatorcontrib>Ma, Wei</creatorcontrib><creatorcontrib>Su, Xiangjie</creatorcontrib><creatorcontrib>Zhang, Xiaomeng</creatorcontrib><creatorcontrib>Lu, Yin</creatorcontrib><creatorcontrib>Zhang, Shaowei</creatorcontrib><creatorcontrib>Yan, Jinghui</creatorcontrib><creatorcontrib>Feng, Daling</creatorcontrib><creatorcontrib>Ma, Lisong</creatorcontrib><creatorcontrib>Taylor, Aoife</creatorcontrib><creatorcontrib>Ge, Yunjia</creatorcontrib><creatorcontrib>Cheng, Qi</creatorcontrib><creatorcontrib>Xu, Kedong</creatorcontrib><creatorcontrib>Wang, Yanhua</creatorcontrib><creatorcontrib>Li, Na</creatorcontrib><creatorcontrib>Gu, Aixia</creatorcontrib><creatorcontrib>Zhang, Ju</creatorcontrib><creatorcontrib>Luo, Shuangxia</creatorcontrib><creatorcontrib>Xuan, Shuxin</creatorcontrib><creatorcontrib>Chen, Xueping</creatorcontrib><creatorcontrib>Scrutton, Nigel S.</creatorcontrib><creatorcontrib>Li, Chengwei</creatorcontrib><creatorcontrib>Zhao, Jianjun</creatorcontrib><creatorcontrib>Shen, Shuxing</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Cell reports (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Mengyang</au><au>Ma, Wei</au><au>Su, Xiangjie</au><au>Zhang, Xiaomeng</au><au>Lu, Yin</au><au>Zhang, Shaowei</au><au>Yan, Jinghui</au><au>Feng, Daling</au><au>Ma, Lisong</au><au>Taylor, Aoife</au><au>Ge, Yunjia</au><au>Cheng, Qi</au><au>Xu, Kedong</au><au>Wang, Yanhua</au><au>Li, Na</au><au>Gu, Aixia</au><au>Zhang, Ju</au><au>Luo, Shuangxia</au><au>Xuan, Shuxin</au><au>Chen, Xueping</au><au>Scrutton, Nigel S.</au><au>Li, Chengwei</au><au>Zhao, Jianjun</au><au>Shen, Shuxing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mutation in a chlorophyll-binding motif of Brassica ferrochelatase enhances both heme and chlorophyll biosynthesis</atitle><jtitle>Cell reports (Cambridge)</jtitle><addtitle>Cell Rep</addtitle><date>2022-12-06</date><risdate>2022</risdate><volume>41</volume><issue>10</issue><spage>111758</spage><epage>111758</epage><pages>111758-111758</pages><artnum>111758</artnum><issn>2211-1247</issn><eissn>2211-1247</eissn><abstract>The heme branch of tetrapyrrole biosynthesis contributes to the regulation of chlorophyll levels. However, the mechanism underlying the balance between chlorophyll and heme synthesis remains elusive. Here, we identify a dark green leaf mutant, dg, from an ethyl methanesulfonate (EMS)-induced mutant library of Chinese cabbage. The dg phenotype is caused by an amino acid substitution in the conserved chlorophyll a/b-binding motif (CAB) of ferrochelatase 2 (BrFC2). This mutation increases the formation of BrFC2 homodimer to promote heme production. Moreover, wild-type BrFC2 and dBrFC2 interact with protochlorophyllide (Pchlide) oxidoreductase B1 and B2 (BrPORB1 and BrPORB2), and dBrFC2 exhibits higher binding ability to substrate Pchlide, thereby promoting BrPORBs-catalyzed production of chlorophyllide (Chlide), which can be directly converted into chlorophyll. Our results show that dBrFC2 is a gain-of-function mutation contributing to balancing heme and chlorophyll synthesis via a regulatory mechanism in which dBrFC2 promotes BrPORB enzymatic reaction to enhance chlorophyll synthesis. [Display omitted] •A nonsynonymous homozygous mutation of BrFC2 results in increased heme and chlorophyll•BrFC2 and mutated dBrFC2 interact with BrPORBs•The mutated dBrFC2 facilitates Pchlide-binding ability to promote chlorophyll synthesis•BrFC2 and BrPORBs coordinately influence chlorophyll and heme biosynthesis Liu et al. identify a nonsynonymous homozygous mutation of BrFC2 resulting in increased heme and chlorophyll. BrFC2 and mutated dBrFC2 interact with BrPORBs, and the mutated dBrFC2 facilitates Pchlide-binding ability to promote chlorophyll synthesis. dBrFC2 is a “gain-of-function mutation” contributing to the balance between heme and chlorophyll synthesis.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>36476857</pmid><doi>10.1016/j.celrep.2022.111758</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2211-1247
ispartof Cell reports (Cambridge), 2022-12, Vol.41 (10), p.111758-111758, Article 111758
issn 2211-1247
2211-1247
language eng
recordid cdi_proquest_miscellaneous_2753302597
source MEDLINE; DOAJ Directory of Open Access Journals; Cell Press Free Archives; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Brassica - genetics
Chinese cabbage
Chlorophyll A
dark green mutant
Ferrochelatase - genetics
ferrochelatase 2
Heme
Mutation - genetics
protochlorophyllide oxidoreductase B
title Mutation in a chlorophyll-binding motif of Brassica ferrochelatase enhances both heme and chlorophyll biosynthesis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T03%3A05%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mutation%20in%20a%20chlorophyll-binding%20motif%20of%20Brassica%20ferrochelatase%20enhances%20both%20heme%20and%20chlorophyll%20biosynthesis&rft.jtitle=Cell%20reports%20(Cambridge)&rft.au=Liu,%20Mengyang&rft.date=2022-12-06&rft.volume=41&rft.issue=10&rft.spage=111758&rft.epage=111758&rft.pages=111758-111758&rft.artnum=111758&rft.issn=2211-1247&rft.eissn=2211-1247&rft_id=info:doi/10.1016/j.celrep.2022.111758&rft_dat=%3Cproquest_cross%3E2753302597%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2753302597&rft_id=info:pmid/36476857&rft_els_id=S2211124722016412&rfr_iscdi=true