In Situ Spectroscopy and Microscopy Insights into the CO Oxidation Mechanism on Au/CeO2(111)

In this work, we prepared and investigated in ultra-high vacuum (UHV) two stoichiometric CeO2(111) surfaces containing low and high amounts of step edges decorated with 0.05 ML of gold using synchrotron-radiation photoelectron spectroscopy (SRPES) and scanning tunneling microscopy (STM). The UHV stu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2022-12, Vol.14 (50), p.56280-56289
Hauptverfasser: Piliai, Lesia, Matvija, Peter, Dinhová, Thu Ngan, Khalakhan, Ivan, Skála, Tomas, Doležal, Zdeněk, Bezkrovnyi, Oleksii, Kepinski, Leszek, Vorokhta, Mykhailo, Matolínová, Iva
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 56289
container_issue 50
container_start_page 56280
container_title ACS applied materials & interfaces
container_volume 14
creator Piliai, Lesia
Matvija, Peter
Dinhová, Thu Ngan
Khalakhan, Ivan
Skála, Tomas
Doležal, Zdeněk
Bezkrovnyi, Oleksii
Kepinski, Leszek
Vorokhta, Mykhailo
Matolínová, Iva
description In this work, we prepared and investigated in ultra-high vacuum (UHV) two stoichiometric CeO2(111) surfaces containing low and high amounts of step edges decorated with 0.05 ML of gold using synchrotron-radiation photoelectron spectroscopy (SRPES) and scanning tunneling microscopy (STM). The UHV study helped to solve the still unresolved puzzle on how the one-monolayer-high ceria step edges affect the metal–substrate interaction between Au and the CeO2(111) surface. It was found that the concentration of ionic Au+ species on the ceria surface increases with increasing number of ceria step edges and is not correlated with the concentration of Ce3+ ions that are supposed to form on the surface after its interaction with gold nanoparticles. We associated this with an additional channel of Au+ formation on the surface of CeO2(111) related to the interaction of Au atoms with various peroxo oxygen species formed at the ceria step edges during the film growth. The study of CO oxidation on the highly stepped Au/CeO2(111) model sample was performed by combining near-ambient-pressure X-ray photoelectron spectroscopy (NAP-XPS), UHV-STM, and near-ambient-pressure STM (NAP-STM). This powerful combination provided comprehensive information on the processes occurring on the Au/CeO2(111) surface during the interaction with CO, O2, and CO + O2 (1:1) mixture at conditions close to the real working conditions of CO oxidation. It was found that the system demonstrates high stability in CO. However, the surface undergoes substantial chemical and morphological changes as the O2 is added to the reaction cell. Already at 300 K, gold nanoparticles begin to grow using a mechanism that involves the disintegration of small gold nanoparticles in favor of the large ones. With increasing temperature, the model catalyst quickly transforms into a system of primarily large Au particles that contains no ionic gold species.
doi_str_mv 10.1021/acsami.2c15792
format Article
fullrecord <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_2753302181</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2753302181</sourcerecordid><originalsourceid>FETCH-LOGICAL-a223t-1ab36d45f6b490db75135eb0ca68ff90be2446586a4a5b2801217295a321554b3</originalsourceid><addsrcrecordid>eNo9kMtLAzEYxIMoWKtXzzlWYdt8eezjWBYfBcseqjchJNmsTWmT2mRB_3tXWj3NDAzD8EPoFsgUCIWZMlHt3JQaEEVFz9AIKs6zkgp6_u85v0RXMW4IyRklYoTeFx6vXOrxam9NOoRowv4bK9_ipTN_ceGj-1iniJ1PAae1xXWDmy_XquSCx0tr1sq7uMNDmPez2jZ0AgB31-iiU9tob046Rm-PD6_1c_bSPC3q-UumKGUpA6VZ3nLR5ZpXpNWFACasJkblZddVRNvhdy7KXHElNC0JUChoJRSjIATXbIwmx939IXz2Nia5c9HY7VZ5G_ooaSEYGxCVMFTvj9WBltyE_uCHYxKI_EUojwjlCSH7AZxOYxY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2753302181</pqid></control><display><type>article</type><title>In Situ Spectroscopy and Microscopy Insights into the CO Oxidation Mechanism on Au/CeO2(111)</title><source>ACS Publications</source><creator>Piliai, Lesia ; Matvija, Peter ; Dinhová, Thu Ngan ; Khalakhan, Ivan ; Skála, Tomas ; Doležal, Zdeněk ; Bezkrovnyi, Oleksii ; Kepinski, Leszek ; Vorokhta, Mykhailo ; Matolínová, Iva</creator><creatorcontrib>Piliai, Lesia ; Matvija, Peter ; Dinhová, Thu Ngan ; Khalakhan, Ivan ; Skála, Tomas ; Doležal, Zdeněk ; Bezkrovnyi, Oleksii ; Kepinski, Leszek ; Vorokhta, Mykhailo ; Matolínová, Iva</creatorcontrib><description>In this work, we prepared and investigated in ultra-high vacuum (UHV) two stoichiometric CeO2(111) surfaces containing low and high amounts of step edges decorated with 0.05 ML of gold using synchrotron-radiation photoelectron spectroscopy (SRPES) and scanning tunneling microscopy (STM). The UHV study helped to solve the still unresolved puzzle on how the one-monolayer-high ceria step edges affect the metal–substrate interaction between Au and the CeO2(111) surface. It was found that the concentration of ionic Au+ species on the ceria surface increases with increasing number of ceria step edges and is not correlated with the concentration of Ce3+ ions that are supposed to form on the surface after its interaction with gold nanoparticles. We associated this with an additional channel of Au+ formation on the surface of CeO2(111) related to the interaction of Au atoms with various peroxo oxygen species formed at the ceria step edges during the film growth. The study of CO oxidation on the highly stepped Au/CeO2(111) model sample was performed by combining near-ambient-pressure X-ray photoelectron spectroscopy (NAP-XPS), UHV-STM, and near-ambient-pressure STM (NAP-STM). This powerful combination provided comprehensive information on the processes occurring on the Au/CeO2(111) surface during the interaction with CO, O2, and CO + O2 (1:1) mixture at conditions close to the real working conditions of CO oxidation. It was found that the system demonstrates high stability in CO. However, the surface undergoes substantial chemical and morphological changes as the O2 is added to the reaction cell. Already at 300 K, gold nanoparticles begin to grow using a mechanism that involves the disintegration of small gold nanoparticles in favor of the large ones. With increasing temperature, the model catalyst quickly transforms into a system of primarily large Au particles that contains no ionic gold species.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.2c15792</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Surfaces, Interfaces, and Applications</subject><ispartof>ACS applied materials &amp; interfaces, 2022-12, Vol.14 (50), p.56280-56289</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-6158-3316 ; 0000-0002-7069-9748 ; 0000-0003-1633-9183 ; 0000-0003-0175-6128 ; 0000-0002-5762-1030 ; 0000-0001-8382-7027 ; 0000-0003-2909-9422 ; 0000-0002-1567-6930 ; 0000-0003-2929-4148 ; 0000-0001-6808-7809</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.2c15792$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.2c15792$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Piliai, Lesia</creatorcontrib><creatorcontrib>Matvija, Peter</creatorcontrib><creatorcontrib>Dinhová, Thu Ngan</creatorcontrib><creatorcontrib>Khalakhan, Ivan</creatorcontrib><creatorcontrib>Skála, Tomas</creatorcontrib><creatorcontrib>Doležal, Zdeněk</creatorcontrib><creatorcontrib>Bezkrovnyi, Oleksii</creatorcontrib><creatorcontrib>Kepinski, Leszek</creatorcontrib><creatorcontrib>Vorokhta, Mykhailo</creatorcontrib><creatorcontrib>Matolínová, Iva</creatorcontrib><title>In Situ Spectroscopy and Microscopy Insights into the CO Oxidation Mechanism on Au/CeO2(111)</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>In this work, we prepared and investigated in ultra-high vacuum (UHV) two stoichiometric CeO2(111) surfaces containing low and high amounts of step edges decorated with 0.05 ML of gold using synchrotron-radiation photoelectron spectroscopy (SRPES) and scanning tunneling microscopy (STM). The UHV study helped to solve the still unresolved puzzle on how the one-monolayer-high ceria step edges affect the metal–substrate interaction between Au and the CeO2(111) surface. It was found that the concentration of ionic Au+ species on the ceria surface increases with increasing number of ceria step edges and is not correlated with the concentration of Ce3+ ions that are supposed to form on the surface after its interaction with gold nanoparticles. We associated this with an additional channel of Au+ formation on the surface of CeO2(111) related to the interaction of Au atoms with various peroxo oxygen species formed at the ceria step edges during the film growth. The study of CO oxidation on the highly stepped Au/CeO2(111) model sample was performed by combining near-ambient-pressure X-ray photoelectron spectroscopy (NAP-XPS), UHV-STM, and near-ambient-pressure STM (NAP-STM). This powerful combination provided comprehensive information on the processes occurring on the Au/CeO2(111) surface during the interaction with CO, O2, and CO + O2 (1:1) mixture at conditions close to the real working conditions of CO oxidation. It was found that the system demonstrates high stability in CO. However, the surface undergoes substantial chemical and morphological changes as the O2 is added to the reaction cell. Already at 300 K, gold nanoparticles begin to grow using a mechanism that involves the disintegration of small gold nanoparticles in favor of the large ones. With increasing temperature, the model catalyst quickly transforms into a system of primarily large Au particles that contains no ionic gold species.</description><subject>Surfaces, Interfaces, and Applications</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kMtLAzEYxIMoWKtXzzlWYdt8eezjWBYfBcseqjchJNmsTWmT2mRB_3tXWj3NDAzD8EPoFsgUCIWZMlHt3JQaEEVFz9AIKs6zkgp6_u85v0RXMW4IyRklYoTeFx6vXOrxam9NOoRowv4bK9_ipTN_ceGj-1iniJ1PAae1xXWDmy_XquSCx0tr1sq7uMNDmPez2jZ0AgB31-iiU9tob046Rm-PD6_1c_bSPC3q-UumKGUpA6VZ3nLR5ZpXpNWFACasJkblZddVRNvhdy7KXHElNC0JUChoJRSjIATXbIwmx939IXz2Nia5c9HY7VZ5G_ooaSEYGxCVMFTvj9WBltyE_uCHYxKI_EUojwjlCSH7AZxOYxY</recordid><startdate>20221221</startdate><enddate>20221221</enddate><creator>Piliai, Lesia</creator><creator>Matvija, Peter</creator><creator>Dinhová, Thu Ngan</creator><creator>Khalakhan, Ivan</creator><creator>Skála, Tomas</creator><creator>Doležal, Zdeněk</creator><creator>Bezkrovnyi, Oleksii</creator><creator>Kepinski, Leszek</creator><creator>Vorokhta, Mykhailo</creator><creator>Matolínová, Iva</creator><general>American Chemical Society</general><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6158-3316</orcidid><orcidid>https://orcid.org/0000-0002-7069-9748</orcidid><orcidid>https://orcid.org/0000-0003-1633-9183</orcidid><orcidid>https://orcid.org/0000-0003-0175-6128</orcidid><orcidid>https://orcid.org/0000-0002-5762-1030</orcidid><orcidid>https://orcid.org/0000-0001-8382-7027</orcidid><orcidid>https://orcid.org/0000-0003-2909-9422</orcidid><orcidid>https://orcid.org/0000-0002-1567-6930</orcidid><orcidid>https://orcid.org/0000-0003-2929-4148</orcidid><orcidid>https://orcid.org/0000-0001-6808-7809</orcidid></search><sort><creationdate>20221221</creationdate><title>In Situ Spectroscopy and Microscopy Insights into the CO Oxidation Mechanism on Au/CeO2(111)</title><author>Piliai, Lesia ; Matvija, Peter ; Dinhová, Thu Ngan ; Khalakhan, Ivan ; Skála, Tomas ; Doležal, Zdeněk ; Bezkrovnyi, Oleksii ; Kepinski, Leszek ; Vorokhta, Mykhailo ; Matolínová, Iva</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a223t-1ab36d45f6b490db75135eb0ca68ff90be2446586a4a5b2801217295a321554b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Surfaces, Interfaces, and Applications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Piliai, Lesia</creatorcontrib><creatorcontrib>Matvija, Peter</creatorcontrib><creatorcontrib>Dinhová, Thu Ngan</creatorcontrib><creatorcontrib>Khalakhan, Ivan</creatorcontrib><creatorcontrib>Skála, Tomas</creatorcontrib><creatorcontrib>Doležal, Zdeněk</creatorcontrib><creatorcontrib>Bezkrovnyi, Oleksii</creatorcontrib><creatorcontrib>Kepinski, Leszek</creatorcontrib><creatorcontrib>Vorokhta, Mykhailo</creatorcontrib><creatorcontrib>Matolínová, Iva</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Piliai, Lesia</au><au>Matvija, Peter</au><au>Dinhová, Thu Ngan</au><au>Khalakhan, Ivan</au><au>Skála, Tomas</au><au>Doležal, Zdeněk</au><au>Bezkrovnyi, Oleksii</au><au>Kepinski, Leszek</au><au>Vorokhta, Mykhailo</au><au>Matolínová, Iva</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In Situ Spectroscopy and Microscopy Insights into the CO Oxidation Mechanism on Au/CeO2(111)</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2022-12-21</date><risdate>2022</risdate><volume>14</volume><issue>50</issue><spage>56280</spage><epage>56289</epage><pages>56280-56289</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>In this work, we prepared and investigated in ultra-high vacuum (UHV) two stoichiometric CeO2(111) surfaces containing low and high amounts of step edges decorated with 0.05 ML of gold using synchrotron-radiation photoelectron spectroscopy (SRPES) and scanning tunneling microscopy (STM). The UHV study helped to solve the still unresolved puzzle on how the one-monolayer-high ceria step edges affect the metal–substrate interaction between Au and the CeO2(111) surface. It was found that the concentration of ionic Au+ species on the ceria surface increases with increasing number of ceria step edges and is not correlated with the concentration of Ce3+ ions that are supposed to form on the surface after its interaction with gold nanoparticles. We associated this with an additional channel of Au+ formation on the surface of CeO2(111) related to the interaction of Au atoms with various peroxo oxygen species formed at the ceria step edges during the film growth. The study of CO oxidation on the highly stepped Au/CeO2(111) model sample was performed by combining near-ambient-pressure X-ray photoelectron spectroscopy (NAP-XPS), UHV-STM, and near-ambient-pressure STM (NAP-STM). This powerful combination provided comprehensive information on the processes occurring on the Au/CeO2(111) surface during the interaction with CO, O2, and CO + O2 (1:1) mixture at conditions close to the real working conditions of CO oxidation. It was found that the system demonstrates high stability in CO. However, the surface undergoes substantial chemical and morphological changes as the O2 is added to the reaction cell. Already at 300 K, gold nanoparticles begin to grow using a mechanism that involves the disintegration of small gold nanoparticles in favor of the large ones. With increasing temperature, the model catalyst quickly transforms into a system of primarily large Au particles that contains no ionic gold species.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsami.2c15792</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-6158-3316</orcidid><orcidid>https://orcid.org/0000-0002-7069-9748</orcidid><orcidid>https://orcid.org/0000-0003-1633-9183</orcidid><orcidid>https://orcid.org/0000-0003-0175-6128</orcidid><orcidid>https://orcid.org/0000-0002-5762-1030</orcidid><orcidid>https://orcid.org/0000-0001-8382-7027</orcidid><orcidid>https://orcid.org/0000-0003-2909-9422</orcidid><orcidid>https://orcid.org/0000-0002-1567-6930</orcidid><orcidid>https://orcid.org/0000-0003-2929-4148</orcidid><orcidid>https://orcid.org/0000-0001-6808-7809</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2022-12, Vol.14 (50), p.56280-56289
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_2753302181
source ACS Publications
subjects Surfaces, Interfaces, and Applications
title In Situ Spectroscopy and Microscopy Insights into the CO Oxidation Mechanism on Au/CeO2(111)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T06%3A10%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20Situ%20Spectroscopy%20and%20Microscopy%20Insights%20into%20the%20CO%20Oxidation%20Mechanism%20on%20Au/CeO2(111)&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Piliai,%20Lesia&rft.date=2022-12-21&rft.volume=14&rft.issue=50&rft.spage=56280&rft.epage=56289&rft.pages=56280-56289&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.2c15792&rft_dat=%3Cproquest_acs_j%3E2753302181%3C/proquest_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2753302181&rft_id=info:pmid/&rfr_iscdi=true