In Situ Spectroscopy and Microscopy Insights into the CO Oxidation Mechanism on Au/CeO2(111)
In this work, we prepared and investigated in ultra-high vacuum (UHV) two stoichiometric CeO2(111) surfaces containing low and high amounts of step edges decorated with 0.05 ML of gold using synchrotron-radiation photoelectron spectroscopy (SRPES) and scanning tunneling microscopy (STM). The UHV stu...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2022-12, Vol.14 (50), p.56280-56289 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 56289 |
---|---|
container_issue | 50 |
container_start_page | 56280 |
container_title | ACS applied materials & interfaces |
container_volume | 14 |
creator | Piliai, Lesia Matvija, Peter Dinhová, Thu Ngan Khalakhan, Ivan Skála, Tomas Doležal, Zdeněk Bezkrovnyi, Oleksii Kepinski, Leszek Vorokhta, Mykhailo Matolínová, Iva |
description | In this work, we prepared and investigated in ultra-high vacuum (UHV) two stoichiometric CeO2(111) surfaces containing low and high amounts of step edges decorated with 0.05 ML of gold using synchrotron-radiation photoelectron spectroscopy (SRPES) and scanning tunneling microscopy (STM). The UHV study helped to solve the still unresolved puzzle on how the one-monolayer-high ceria step edges affect the metal–substrate interaction between Au and the CeO2(111) surface. It was found that the concentration of ionic Au+ species on the ceria surface increases with increasing number of ceria step edges and is not correlated with the concentration of Ce3+ ions that are supposed to form on the surface after its interaction with gold nanoparticles. We associated this with an additional channel of Au+ formation on the surface of CeO2(111) related to the interaction of Au atoms with various peroxo oxygen species formed at the ceria step edges during the film growth. The study of CO oxidation on the highly stepped Au/CeO2(111) model sample was performed by combining near-ambient-pressure X-ray photoelectron spectroscopy (NAP-XPS), UHV-STM, and near-ambient-pressure STM (NAP-STM). This powerful combination provided comprehensive information on the processes occurring on the Au/CeO2(111) surface during the interaction with CO, O2, and CO + O2 (1:1) mixture at conditions close to the real working conditions of CO oxidation. It was found that the system demonstrates high stability in CO. However, the surface undergoes substantial chemical and morphological changes as the O2 is added to the reaction cell. Already at 300 K, gold nanoparticles begin to grow using a mechanism that involves the disintegration of small gold nanoparticles in favor of the large ones. With increasing temperature, the model catalyst quickly transforms into a system of primarily large Au particles that contains no ionic gold species. |
doi_str_mv | 10.1021/acsami.2c15792 |
format | Article |
fullrecord | <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_2753302181</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2753302181</sourcerecordid><originalsourceid>FETCH-LOGICAL-a223t-1ab36d45f6b490db75135eb0ca68ff90be2446586a4a5b2801217295a321554b3</originalsourceid><addsrcrecordid>eNo9kMtLAzEYxIMoWKtXzzlWYdt8eezjWBYfBcseqjchJNmsTWmT2mRB_3tXWj3NDAzD8EPoFsgUCIWZMlHt3JQaEEVFz9AIKs6zkgp6_u85v0RXMW4IyRklYoTeFx6vXOrxam9NOoRowv4bK9_ipTN_ceGj-1iniJ1PAae1xXWDmy_XquSCx0tr1sq7uMNDmPez2jZ0AgB31-iiU9tob046Rm-PD6_1c_bSPC3q-UumKGUpA6VZ3nLR5ZpXpNWFACasJkblZddVRNvhdy7KXHElNC0JUChoJRSjIATXbIwmx939IXz2Nia5c9HY7VZ5G_ooaSEYGxCVMFTvj9WBltyE_uCHYxKI_EUojwjlCSH7AZxOYxY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2753302181</pqid></control><display><type>article</type><title>In Situ Spectroscopy and Microscopy Insights into the CO Oxidation Mechanism on Au/CeO2(111)</title><source>ACS Publications</source><creator>Piliai, Lesia ; Matvija, Peter ; Dinhová, Thu Ngan ; Khalakhan, Ivan ; Skála, Tomas ; Doležal, Zdeněk ; Bezkrovnyi, Oleksii ; Kepinski, Leszek ; Vorokhta, Mykhailo ; Matolínová, Iva</creator><creatorcontrib>Piliai, Lesia ; Matvija, Peter ; Dinhová, Thu Ngan ; Khalakhan, Ivan ; Skála, Tomas ; Doležal, Zdeněk ; Bezkrovnyi, Oleksii ; Kepinski, Leszek ; Vorokhta, Mykhailo ; Matolínová, Iva</creatorcontrib><description>In this work, we prepared and investigated in ultra-high vacuum (UHV) two stoichiometric CeO2(111) surfaces containing low and high amounts of step edges decorated with 0.05 ML of gold using synchrotron-radiation photoelectron spectroscopy (SRPES) and scanning tunneling microscopy (STM). The UHV study helped to solve the still unresolved puzzle on how the one-monolayer-high ceria step edges affect the metal–substrate interaction between Au and the CeO2(111) surface. It was found that the concentration of ionic Au+ species on the ceria surface increases with increasing number of ceria step edges and is not correlated with the concentration of Ce3+ ions that are supposed to form on the surface after its interaction with gold nanoparticles. We associated this with an additional channel of Au+ formation on the surface of CeO2(111) related to the interaction of Au atoms with various peroxo oxygen species formed at the ceria step edges during the film growth. The study of CO oxidation on the highly stepped Au/CeO2(111) model sample was performed by combining near-ambient-pressure X-ray photoelectron spectroscopy (NAP-XPS), UHV-STM, and near-ambient-pressure STM (NAP-STM). This powerful combination provided comprehensive information on the processes occurring on the Au/CeO2(111) surface during the interaction with CO, O2, and CO + O2 (1:1) mixture at conditions close to the real working conditions of CO oxidation. It was found that the system demonstrates high stability in CO. However, the surface undergoes substantial chemical and morphological changes as the O2 is added to the reaction cell. Already at 300 K, gold nanoparticles begin to grow using a mechanism that involves the disintegration of small gold nanoparticles in favor of the large ones. With increasing temperature, the model catalyst quickly transforms into a system of primarily large Au particles that contains no ionic gold species.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.2c15792</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Surfaces, Interfaces, and Applications</subject><ispartof>ACS applied materials & interfaces, 2022-12, Vol.14 (50), p.56280-56289</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-6158-3316 ; 0000-0002-7069-9748 ; 0000-0003-1633-9183 ; 0000-0003-0175-6128 ; 0000-0002-5762-1030 ; 0000-0001-8382-7027 ; 0000-0003-2909-9422 ; 0000-0002-1567-6930 ; 0000-0003-2929-4148 ; 0000-0001-6808-7809</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.2c15792$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.2c15792$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Piliai, Lesia</creatorcontrib><creatorcontrib>Matvija, Peter</creatorcontrib><creatorcontrib>Dinhová, Thu Ngan</creatorcontrib><creatorcontrib>Khalakhan, Ivan</creatorcontrib><creatorcontrib>Skála, Tomas</creatorcontrib><creatorcontrib>Doležal, Zdeněk</creatorcontrib><creatorcontrib>Bezkrovnyi, Oleksii</creatorcontrib><creatorcontrib>Kepinski, Leszek</creatorcontrib><creatorcontrib>Vorokhta, Mykhailo</creatorcontrib><creatorcontrib>Matolínová, Iva</creatorcontrib><title>In Situ Spectroscopy and Microscopy Insights into the CO Oxidation Mechanism on Au/CeO2(111)</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>In this work, we prepared and investigated in ultra-high vacuum (UHV) two stoichiometric CeO2(111) surfaces containing low and high amounts of step edges decorated with 0.05 ML of gold using synchrotron-radiation photoelectron spectroscopy (SRPES) and scanning tunneling microscopy (STM). The UHV study helped to solve the still unresolved puzzle on how the one-monolayer-high ceria step edges affect the metal–substrate interaction between Au and the CeO2(111) surface. It was found that the concentration of ionic Au+ species on the ceria surface increases with increasing number of ceria step edges and is not correlated with the concentration of Ce3+ ions that are supposed to form on the surface after its interaction with gold nanoparticles. We associated this with an additional channel of Au+ formation on the surface of CeO2(111) related to the interaction of Au atoms with various peroxo oxygen species formed at the ceria step edges during the film growth. The study of CO oxidation on the highly stepped Au/CeO2(111) model sample was performed by combining near-ambient-pressure X-ray photoelectron spectroscopy (NAP-XPS), UHV-STM, and near-ambient-pressure STM (NAP-STM). This powerful combination provided comprehensive information on the processes occurring on the Au/CeO2(111) surface during the interaction with CO, O2, and CO + O2 (1:1) mixture at conditions close to the real working conditions of CO oxidation. It was found that the system demonstrates high stability in CO. However, the surface undergoes substantial chemical and morphological changes as the O2 is added to the reaction cell. Already at 300 K, gold nanoparticles begin to grow using a mechanism that involves the disintegration of small gold nanoparticles in favor of the large ones. With increasing temperature, the model catalyst quickly transforms into a system of primarily large Au particles that contains no ionic gold species.</description><subject>Surfaces, Interfaces, and Applications</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kMtLAzEYxIMoWKtXzzlWYdt8eezjWBYfBcseqjchJNmsTWmT2mRB_3tXWj3NDAzD8EPoFsgUCIWZMlHt3JQaEEVFz9AIKs6zkgp6_u85v0RXMW4IyRklYoTeFx6vXOrxam9NOoRowv4bK9_ipTN_ceGj-1iniJ1PAae1xXWDmy_XquSCx0tr1sq7uMNDmPez2jZ0AgB31-iiU9tob046Rm-PD6_1c_bSPC3q-UumKGUpA6VZ3nLR5ZpXpNWFACasJkblZddVRNvhdy7KXHElNC0JUChoJRSjIATXbIwmx939IXz2Nia5c9HY7VZ5G_ooaSEYGxCVMFTvj9WBltyE_uCHYxKI_EUojwjlCSH7AZxOYxY</recordid><startdate>20221221</startdate><enddate>20221221</enddate><creator>Piliai, Lesia</creator><creator>Matvija, Peter</creator><creator>Dinhová, Thu Ngan</creator><creator>Khalakhan, Ivan</creator><creator>Skála, Tomas</creator><creator>Doležal, Zdeněk</creator><creator>Bezkrovnyi, Oleksii</creator><creator>Kepinski, Leszek</creator><creator>Vorokhta, Mykhailo</creator><creator>Matolínová, Iva</creator><general>American Chemical Society</general><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6158-3316</orcidid><orcidid>https://orcid.org/0000-0002-7069-9748</orcidid><orcidid>https://orcid.org/0000-0003-1633-9183</orcidid><orcidid>https://orcid.org/0000-0003-0175-6128</orcidid><orcidid>https://orcid.org/0000-0002-5762-1030</orcidid><orcidid>https://orcid.org/0000-0001-8382-7027</orcidid><orcidid>https://orcid.org/0000-0003-2909-9422</orcidid><orcidid>https://orcid.org/0000-0002-1567-6930</orcidid><orcidid>https://orcid.org/0000-0003-2929-4148</orcidid><orcidid>https://orcid.org/0000-0001-6808-7809</orcidid></search><sort><creationdate>20221221</creationdate><title>In Situ Spectroscopy and Microscopy Insights into the CO Oxidation Mechanism on Au/CeO2(111)</title><author>Piliai, Lesia ; Matvija, Peter ; Dinhová, Thu Ngan ; Khalakhan, Ivan ; Skála, Tomas ; Doležal, Zdeněk ; Bezkrovnyi, Oleksii ; Kepinski, Leszek ; Vorokhta, Mykhailo ; Matolínová, Iva</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a223t-1ab36d45f6b490db75135eb0ca68ff90be2446586a4a5b2801217295a321554b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Surfaces, Interfaces, and Applications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Piliai, Lesia</creatorcontrib><creatorcontrib>Matvija, Peter</creatorcontrib><creatorcontrib>Dinhová, Thu Ngan</creatorcontrib><creatorcontrib>Khalakhan, Ivan</creatorcontrib><creatorcontrib>Skála, Tomas</creatorcontrib><creatorcontrib>Doležal, Zdeněk</creatorcontrib><creatorcontrib>Bezkrovnyi, Oleksii</creatorcontrib><creatorcontrib>Kepinski, Leszek</creatorcontrib><creatorcontrib>Vorokhta, Mykhailo</creatorcontrib><creatorcontrib>Matolínová, Iva</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Piliai, Lesia</au><au>Matvija, Peter</au><au>Dinhová, Thu Ngan</au><au>Khalakhan, Ivan</au><au>Skála, Tomas</au><au>Doležal, Zdeněk</au><au>Bezkrovnyi, Oleksii</au><au>Kepinski, Leszek</au><au>Vorokhta, Mykhailo</au><au>Matolínová, Iva</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In Situ Spectroscopy and Microscopy Insights into the CO Oxidation Mechanism on Au/CeO2(111)</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2022-12-21</date><risdate>2022</risdate><volume>14</volume><issue>50</issue><spage>56280</spage><epage>56289</epage><pages>56280-56289</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>In this work, we prepared and investigated in ultra-high vacuum (UHV) two stoichiometric CeO2(111) surfaces containing low and high amounts of step edges decorated with 0.05 ML of gold using synchrotron-radiation photoelectron spectroscopy (SRPES) and scanning tunneling microscopy (STM). The UHV study helped to solve the still unresolved puzzle on how the one-monolayer-high ceria step edges affect the metal–substrate interaction between Au and the CeO2(111) surface. It was found that the concentration of ionic Au+ species on the ceria surface increases with increasing number of ceria step edges and is not correlated with the concentration of Ce3+ ions that are supposed to form on the surface after its interaction with gold nanoparticles. We associated this with an additional channel of Au+ formation on the surface of CeO2(111) related to the interaction of Au atoms with various peroxo oxygen species formed at the ceria step edges during the film growth. The study of CO oxidation on the highly stepped Au/CeO2(111) model sample was performed by combining near-ambient-pressure X-ray photoelectron spectroscopy (NAP-XPS), UHV-STM, and near-ambient-pressure STM (NAP-STM). This powerful combination provided comprehensive information on the processes occurring on the Au/CeO2(111) surface during the interaction with CO, O2, and CO + O2 (1:1) mixture at conditions close to the real working conditions of CO oxidation. It was found that the system demonstrates high stability in CO. However, the surface undergoes substantial chemical and morphological changes as the O2 is added to the reaction cell. Already at 300 K, gold nanoparticles begin to grow using a mechanism that involves the disintegration of small gold nanoparticles in favor of the large ones. With increasing temperature, the model catalyst quickly transforms into a system of primarily large Au particles that contains no ionic gold species.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsami.2c15792</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-6158-3316</orcidid><orcidid>https://orcid.org/0000-0002-7069-9748</orcidid><orcidid>https://orcid.org/0000-0003-1633-9183</orcidid><orcidid>https://orcid.org/0000-0003-0175-6128</orcidid><orcidid>https://orcid.org/0000-0002-5762-1030</orcidid><orcidid>https://orcid.org/0000-0001-8382-7027</orcidid><orcidid>https://orcid.org/0000-0003-2909-9422</orcidid><orcidid>https://orcid.org/0000-0002-1567-6930</orcidid><orcidid>https://orcid.org/0000-0003-2929-4148</orcidid><orcidid>https://orcid.org/0000-0001-6808-7809</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2022-12, Vol.14 (50), p.56280-56289 |
issn | 1944-8244 1944-8252 |
language | eng |
recordid | cdi_proquest_miscellaneous_2753302181 |
source | ACS Publications |
subjects | Surfaces, Interfaces, and Applications |
title | In Situ Spectroscopy and Microscopy Insights into the CO Oxidation Mechanism on Au/CeO2(111) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T06%3A10%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20Situ%20Spectroscopy%20and%20Microscopy%20Insights%20into%20the%20CO%20Oxidation%20Mechanism%20on%20Au/CeO2(111)&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Piliai,%20Lesia&rft.date=2022-12-21&rft.volume=14&rft.issue=50&rft.spage=56280&rft.epage=56289&rft.pages=56280-56289&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.2c15792&rft_dat=%3Cproquest_acs_j%3E2753302181%3C/proquest_acs_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2753302181&rft_id=info:pmid/&rfr_iscdi=true |