Organoid modeling of human fetal lung alveolar development reveals mechanisms of cell fate patterning and neonatal respiratory disease

Variation in lung alveolar development is strongly linked to disease susceptibility. However, underlying cellular and molecular mechanisms are difficult to study in humans. We have identified an alveolar-fated epithelial progenitor in human fetal lungs, which we grow as self-organizing organoids tha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell stem cell 2023-01, Vol.30 (1), p.20-37.e9
Hauptverfasser: Lim, Kyungtae, Donovan, Alex P.A., Tang, Walfred, Sun, Dawei, He, Peng, Pett, J. Patrick, Teichmann, Sarah A., Marioni, John C., Meyer, Kerstin B., Brand, Andrea H., Rawlins, Emma L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 37.e9
container_issue 1
container_start_page 20
container_title Cell stem cell
container_volume 30
creator Lim, Kyungtae
Donovan, Alex P.A.
Tang, Walfred
Sun, Dawei
He, Peng
Pett, J. Patrick
Teichmann, Sarah A.
Marioni, John C.
Meyer, Kerstin B.
Brand, Andrea H.
Rawlins, Emma L.
description Variation in lung alveolar development is strongly linked to disease susceptibility. However, underlying cellular and molecular mechanisms are difficult to study in humans. We have identified an alveolar-fated epithelial progenitor in human fetal lungs, which we grow as self-organizing organoids that model key aspects of cell lineage commitment. Using this system, we have functionally validated cell-cell interactions in the developing human alveolar niche, showing that Wnt signaling from differentiating fibroblasts promotes alveolar-type-2 cell identity, whereas myofibroblasts secrete the Wnt inhibitor, NOTUM, providing spatial patterning. We identify a Wnt-NKX2.1 axis controlling alveolar differentiation. Moreover, we show that differential binding of NKX2.1 coordinates alveolar maturation, allowing us to model the effects of human genetic variation in NKX2.1 on alveolar differentiation. Our organoid system recapitulates key aspects of human fetal lung stem cell biology allowing mechanistic experiments to determine the cellular and molecular regulation of human development and disease. [Display omitted] •Human fetal lung tip progenitor cells commit to alveolar fate from 15 pcw in vivo•Late-stage tip-derived organoids readily differentiated to mature cell fates•NOTUM+ myofibroblasts spatially pattern differentiating human alveolar-type-2 cells•Lineage-determining TFs facilitate organoid modeling of neonatal lung disease Lim and colleagues identify the timing of alveolar-fate specification in human fetal lungs. Their stage-specific organoids allow functional analysis of mechanisms controlling fate maintenance and differentiation in the developing alveolar niche, facilitating the modeling of neonatal lung disease.
doi_str_mv 10.1016/j.stem.2022.11.013
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2753299930</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S193459092200460X</els_id><sourcerecordid>2753299930</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-52b14012903a23d733ad55ed820e2b91ae3e5086104e89ffe0eb68fdcac54d1b3</originalsourceid><addsrcrecordid>eNp9kM1u1TAQRi0Eoj_wAiyQl2wSxnZyE0tsUAUUqVI3sLYm8aT1VWIH27lSX4DnxtEtLFl5ZH3f0cxh7J2AWoA4fDzWKdNSS5CyFqIGoV6wS9F3baW7rntZZq2aqtWgL9hVSkeAthPQvWYX6tBo1fVwyX7fxwf0wVm-BEuz8w88TPxxW9DziTLOfN7KH84nCjNGbulEc1gX8pnHMuOc-ELjI3qXlrR3R5pnPmEmvmLOFP3ORG-5p-BxJ0ZKq4uYQ3zi1iXCRG_Yq6mg6O3ze81-fv3y4-a2urv_9v3m8101NgC5auUgGhBSg0KpbKcU2rYl20sgOWiBpKiF_iCgoV5PEwENh36yI45tY8WgrtmHM3eN4ddGKZvFpX1jLNttyciuVVJrraBE5Tk6xpBSpMms0S0Yn4wAs_s3R7P7N7t_I4Qp_kvp_TN_Gxay_yp_hZfAp3OAypUnR9Gk0ZEfybpIYzY2uP_x_wD5gZoc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2753299930</pqid></control><display><type>article</type><title>Organoid modeling of human fetal lung alveolar development reveals mechanisms of cell fate patterning and neonatal respiratory disease</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Lim, Kyungtae ; Donovan, Alex P.A. ; Tang, Walfred ; Sun, Dawei ; He, Peng ; Pett, J. Patrick ; Teichmann, Sarah A. ; Marioni, John C. ; Meyer, Kerstin B. ; Brand, Andrea H. ; Rawlins, Emma L.</creator><creatorcontrib>Lim, Kyungtae ; Donovan, Alex P.A. ; Tang, Walfred ; Sun, Dawei ; He, Peng ; Pett, J. Patrick ; Teichmann, Sarah A. ; Marioni, John C. ; Meyer, Kerstin B. ; Brand, Andrea H. ; Rawlins, Emma L.</creatorcontrib><description>Variation in lung alveolar development is strongly linked to disease susceptibility. However, underlying cellular and molecular mechanisms are difficult to study in humans. We have identified an alveolar-fated epithelial progenitor in human fetal lungs, which we grow as self-organizing organoids that model key aspects of cell lineage commitment. Using this system, we have functionally validated cell-cell interactions in the developing human alveolar niche, showing that Wnt signaling from differentiating fibroblasts promotes alveolar-type-2 cell identity, whereas myofibroblasts secrete the Wnt inhibitor, NOTUM, providing spatial patterning. We identify a Wnt-NKX2.1 axis controlling alveolar differentiation. Moreover, we show that differential binding of NKX2.1 coordinates alveolar maturation, allowing us to model the effects of human genetic variation in NKX2.1 on alveolar differentiation. Our organoid system recapitulates key aspects of human fetal lung stem cell biology allowing mechanistic experiments to determine the cellular and molecular regulation of human development and disease. [Display omitted] •Human fetal lung tip progenitor cells commit to alveolar fate from 15 pcw in vivo•Late-stage tip-derived organoids readily differentiated to mature cell fates•NOTUM+ myofibroblasts spatially pattern differentiating human alveolar-type-2 cells•Lineage-determining TFs facilitate organoid modeling of neonatal lung disease Lim and colleagues identify the timing of alveolar-fate specification in human fetal lungs. Their stage-specific organoids allow functional analysis of mechanisms controlling fate maintenance and differentiation in the developing alveolar niche, facilitating the modeling of neonatal lung disease.</description><identifier>ISSN: 1934-5909</identifier><identifier>ISSN: 1875-9777</identifier><identifier>EISSN: 1875-9777</identifier><identifier>DOI: 10.1016/j.stem.2022.11.013</identifier><identifier>PMID: 36493780</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>alveolar differentiation ; Alveolar Epithelial Cells - metabolism ; alveolar patterning ; Cell Differentiation - physiology ; Cell Lineage ; distal tip ; human lung development ; Humans ; Infant, Newborn ; Lung - embryology ; NKX2.1 ; NOTUM ; Organoids ; Respiratory Tract Diseases - embryology ; Respiratory Tract Diseases - metabolism ; stem cell ; WNT</subject><ispartof>Cell stem cell, 2023-01, Vol.30 (1), p.20-37.e9</ispartof><rights>2022 The Author(s)</rights><rights>Copyright © 2022 The Author(s). Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-52b14012903a23d733ad55ed820e2b91ae3e5086104e89ffe0eb68fdcac54d1b3</citedby><cites>FETCH-LOGICAL-c400t-52b14012903a23d733ad55ed820e2b91ae3e5086104e89ffe0eb68fdcac54d1b3</cites><orcidid>0000-0001-7426-3792</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S193459092200460X$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36493780$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lim, Kyungtae</creatorcontrib><creatorcontrib>Donovan, Alex P.A.</creatorcontrib><creatorcontrib>Tang, Walfred</creatorcontrib><creatorcontrib>Sun, Dawei</creatorcontrib><creatorcontrib>He, Peng</creatorcontrib><creatorcontrib>Pett, J. Patrick</creatorcontrib><creatorcontrib>Teichmann, Sarah A.</creatorcontrib><creatorcontrib>Marioni, John C.</creatorcontrib><creatorcontrib>Meyer, Kerstin B.</creatorcontrib><creatorcontrib>Brand, Andrea H.</creatorcontrib><creatorcontrib>Rawlins, Emma L.</creatorcontrib><title>Organoid modeling of human fetal lung alveolar development reveals mechanisms of cell fate patterning and neonatal respiratory disease</title><title>Cell stem cell</title><addtitle>Cell Stem Cell</addtitle><description>Variation in lung alveolar development is strongly linked to disease susceptibility. However, underlying cellular and molecular mechanisms are difficult to study in humans. We have identified an alveolar-fated epithelial progenitor in human fetal lungs, which we grow as self-organizing organoids that model key aspects of cell lineage commitment. Using this system, we have functionally validated cell-cell interactions in the developing human alveolar niche, showing that Wnt signaling from differentiating fibroblasts promotes alveolar-type-2 cell identity, whereas myofibroblasts secrete the Wnt inhibitor, NOTUM, providing spatial patterning. We identify a Wnt-NKX2.1 axis controlling alveolar differentiation. Moreover, we show that differential binding of NKX2.1 coordinates alveolar maturation, allowing us to model the effects of human genetic variation in NKX2.1 on alveolar differentiation. Our organoid system recapitulates key aspects of human fetal lung stem cell biology allowing mechanistic experiments to determine the cellular and molecular regulation of human development and disease. [Display omitted] •Human fetal lung tip progenitor cells commit to alveolar fate from 15 pcw in vivo•Late-stage tip-derived organoids readily differentiated to mature cell fates•NOTUM+ myofibroblasts spatially pattern differentiating human alveolar-type-2 cells•Lineage-determining TFs facilitate organoid modeling of neonatal lung disease Lim and colleagues identify the timing of alveolar-fate specification in human fetal lungs. Their stage-specific organoids allow functional analysis of mechanisms controlling fate maintenance and differentiation in the developing alveolar niche, facilitating the modeling of neonatal lung disease.</description><subject>alveolar differentiation</subject><subject>Alveolar Epithelial Cells - metabolism</subject><subject>alveolar patterning</subject><subject>Cell Differentiation - physiology</subject><subject>Cell Lineage</subject><subject>distal tip</subject><subject>human lung development</subject><subject>Humans</subject><subject>Infant, Newborn</subject><subject>Lung - embryology</subject><subject>NKX2.1</subject><subject>NOTUM</subject><subject>Organoids</subject><subject>Respiratory Tract Diseases - embryology</subject><subject>Respiratory Tract Diseases - metabolism</subject><subject>stem cell</subject><subject>WNT</subject><issn>1934-5909</issn><issn>1875-9777</issn><issn>1875-9777</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kM1u1TAQRi0Eoj_wAiyQl2wSxnZyE0tsUAUUqVI3sLYm8aT1VWIH27lSX4DnxtEtLFl5ZH3f0cxh7J2AWoA4fDzWKdNSS5CyFqIGoV6wS9F3baW7rntZZq2aqtWgL9hVSkeAthPQvWYX6tBo1fVwyX7fxwf0wVm-BEuz8w88TPxxW9DziTLOfN7KH84nCjNGbulEc1gX8pnHMuOc-ELjI3qXlrR3R5pnPmEmvmLOFP3ORG-5p-BxJ0ZKq4uYQ3zi1iXCRG_Yq6mg6O3ze81-fv3y4-a2urv_9v3m8101NgC5auUgGhBSg0KpbKcU2rYl20sgOWiBpKiF_iCgoV5PEwENh36yI45tY8WgrtmHM3eN4ddGKZvFpX1jLNttyciuVVJrraBE5Tk6xpBSpMms0S0Yn4wAs_s3R7P7N7t_I4Qp_kvp_TN_Gxay_yp_hZfAp3OAypUnR9Gk0ZEfybpIYzY2uP_x_wD5gZoc</recordid><startdate>20230105</startdate><enddate>20230105</enddate><creator>Lim, Kyungtae</creator><creator>Donovan, Alex P.A.</creator><creator>Tang, Walfred</creator><creator>Sun, Dawei</creator><creator>He, Peng</creator><creator>Pett, J. Patrick</creator><creator>Teichmann, Sarah A.</creator><creator>Marioni, John C.</creator><creator>Meyer, Kerstin B.</creator><creator>Brand, Andrea H.</creator><creator>Rawlins, Emma L.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7426-3792</orcidid></search><sort><creationdate>20230105</creationdate><title>Organoid modeling of human fetal lung alveolar development reveals mechanisms of cell fate patterning and neonatal respiratory disease</title><author>Lim, Kyungtae ; Donovan, Alex P.A. ; Tang, Walfred ; Sun, Dawei ; He, Peng ; Pett, J. Patrick ; Teichmann, Sarah A. ; Marioni, John C. ; Meyer, Kerstin B. ; Brand, Andrea H. ; Rawlins, Emma L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-52b14012903a23d733ad55ed820e2b91ae3e5086104e89ffe0eb68fdcac54d1b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>alveolar differentiation</topic><topic>Alveolar Epithelial Cells - metabolism</topic><topic>alveolar patterning</topic><topic>Cell Differentiation - physiology</topic><topic>Cell Lineage</topic><topic>distal tip</topic><topic>human lung development</topic><topic>Humans</topic><topic>Infant, Newborn</topic><topic>Lung - embryology</topic><topic>NKX2.1</topic><topic>NOTUM</topic><topic>Organoids</topic><topic>Respiratory Tract Diseases - embryology</topic><topic>Respiratory Tract Diseases - metabolism</topic><topic>stem cell</topic><topic>WNT</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lim, Kyungtae</creatorcontrib><creatorcontrib>Donovan, Alex P.A.</creatorcontrib><creatorcontrib>Tang, Walfred</creatorcontrib><creatorcontrib>Sun, Dawei</creatorcontrib><creatorcontrib>He, Peng</creatorcontrib><creatorcontrib>Pett, J. Patrick</creatorcontrib><creatorcontrib>Teichmann, Sarah A.</creatorcontrib><creatorcontrib>Marioni, John C.</creatorcontrib><creatorcontrib>Meyer, Kerstin B.</creatorcontrib><creatorcontrib>Brand, Andrea H.</creatorcontrib><creatorcontrib>Rawlins, Emma L.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Cell stem cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lim, Kyungtae</au><au>Donovan, Alex P.A.</au><au>Tang, Walfred</au><au>Sun, Dawei</au><au>He, Peng</au><au>Pett, J. Patrick</au><au>Teichmann, Sarah A.</au><au>Marioni, John C.</au><au>Meyer, Kerstin B.</au><au>Brand, Andrea H.</au><au>Rawlins, Emma L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Organoid modeling of human fetal lung alveolar development reveals mechanisms of cell fate patterning and neonatal respiratory disease</atitle><jtitle>Cell stem cell</jtitle><addtitle>Cell Stem Cell</addtitle><date>2023-01-05</date><risdate>2023</risdate><volume>30</volume><issue>1</issue><spage>20</spage><epage>37.e9</epage><pages>20-37.e9</pages><issn>1934-5909</issn><issn>1875-9777</issn><eissn>1875-9777</eissn><abstract>Variation in lung alveolar development is strongly linked to disease susceptibility. However, underlying cellular and molecular mechanisms are difficult to study in humans. We have identified an alveolar-fated epithelial progenitor in human fetal lungs, which we grow as self-organizing organoids that model key aspects of cell lineage commitment. Using this system, we have functionally validated cell-cell interactions in the developing human alveolar niche, showing that Wnt signaling from differentiating fibroblasts promotes alveolar-type-2 cell identity, whereas myofibroblasts secrete the Wnt inhibitor, NOTUM, providing spatial patterning. We identify a Wnt-NKX2.1 axis controlling alveolar differentiation. Moreover, we show that differential binding of NKX2.1 coordinates alveolar maturation, allowing us to model the effects of human genetic variation in NKX2.1 on alveolar differentiation. Our organoid system recapitulates key aspects of human fetal lung stem cell biology allowing mechanistic experiments to determine the cellular and molecular regulation of human development and disease. [Display omitted] •Human fetal lung tip progenitor cells commit to alveolar fate from 15 pcw in vivo•Late-stage tip-derived organoids readily differentiated to mature cell fates•NOTUM+ myofibroblasts spatially pattern differentiating human alveolar-type-2 cells•Lineage-determining TFs facilitate organoid modeling of neonatal lung disease Lim and colleagues identify the timing of alveolar-fate specification in human fetal lungs. Their stage-specific organoids allow functional analysis of mechanisms controlling fate maintenance and differentiation in the developing alveolar niche, facilitating the modeling of neonatal lung disease.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>36493780</pmid><doi>10.1016/j.stem.2022.11.013</doi><orcidid>https://orcid.org/0000-0001-7426-3792</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1934-5909
ispartof Cell stem cell, 2023-01, Vol.30 (1), p.20-37.e9
issn 1934-5909
1875-9777
1875-9777
language eng
recordid cdi_proquest_miscellaneous_2753299930
source MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals
subjects alveolar differentiation
Alveolar Epithelial Cells - metabolism
alveolar patterning
Cell Differentiation - physiology
Cell Lineage
distal tip
human lung development
Humans
Infant, Newborn
Lung - embryology
NKX2.1
NOTUM
Organoids
Respiratory Tract Diseases - embryology
Respiratory Tract Diseases - metabolism
stem cell
WNT
title Organoid modeling of human fetal lung alveolar development reveals mechanisms of cell fate patterning and neonatal respiratory disease
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T21%3A08%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Organoid%20modeling%20of%20human%20fetal%20lung%20alveolar%20development%20reveals%20mechanisms%20of%20cell%20fate%20patterning%20and%20neonatal%20respiratory%20disease&rft.jtitle=Cell%20stem%20cell&rft.au=Lim,%20Kyungtae&rft.date=2023-01-05&rft.volume=30&rft.issue=1&rft.spage=20&rft.epage=37.e9&rft.pages=20-37.e9&rft.issn=1934-5909&rft.eissn=1875-9777&rft_id=info:doi/10.1016/j.stem.2022.11.013&rft_dat=%3Cproquest_cross%3E2753299930%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2753299930&rft_id=info:pmid/36493780&rft_els_id=S193459092200460X&rfr_iscdi=true