Tailoring Cooperative Emission in Molecules: Superradiance and Subradiance from First-Principles Simulations

Cooperative optical effects provide a pathway to both the amplification (superradiance) and the suppression (subradiance) of photon emission from electronically excited states. These captivating phenomena offer a rich variety of possibilities for photonic technologies aimed at electromagnetic energy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry letters 2022-12, Vol.13 (50), p.11601-11609
Hauptverfasser: Bustamante, Carlos M., Gadea, Esteban D., Todorov, Tchavdar N., Scherlis, Damián A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11609
container_issue 50
container_start_page 11601
container_title The journal of physical chemistry letters
container_volume 13
creator Bustamante, Carlos M.
Gadea, Esteban D.
Todorov, Tchavdar N.
Scherlis, Damián A.
description Cooperative optical effects provide a pathway to both the amplification (superradiance) and the suppression (subradiance) of photon emission from electronically excited states. These captivating phenomena offer a rich variety of possibilities for photonic technologies aimed at electromagnetic energy manipulation, including lasers and high-speed emitting devices in the case of superradiance or optical energy storage in that of subradiance. The employment of molecules as the building pieces in these developments requires a precise understanding of the roles of separation, orientation, spatial distribution, and applied fields, which remains challenging for theory and experiments. These questions are addressed here through ab initio quantum dynamics simulations of collective emission on the basis of a novel semiclassical formalism and time-dependent density functional theory. By establishing the configurations leading to decoherence and how the fine-tuning of a pulse can accumulate or release optical energy in H2 arrays, this report provides fundamental insight toward the design of real superradiant and subradiant devices.
doi_str_mv 10.1021/acs.jpclett.2c02795
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2753291397</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2753291397</sourcerecordid><originalsourceid>FETCH-LOGICAL-a390t-28c4f1ef67bed18024362ff14130c2e71e31cda2f16bc3c59e371924adb9a0283</originalsourceid><addsrcrecordid>eNp9kFtLwzAYhoMobk5_gSC99KYzh57inYxNhYnC5nVJ0y-SkTY1aQX_vdHV4ZVXOfC878f3IHRJ8JxgSm6E9PNdJw30_ZxKTHOeHqEp4UkR56RIj__cJ-jM-x3GGcdFfoomLEsKzAmeIrMV2lin27doYW0HTvT6A6Jlo73Xto10Gz1ZA3Iw4G-jzRAIJ2otWgmRaOvwUx3eytkmWmnn-_glNErdhVC00c1gQqtt_Tk6UcJ4uBjPGXpdLbeLh3j9fP-4uFvHgnHcx7SQiSKgsryCmhSYJiyjSpGEMCwp5AQYkbWgimSVZDLlwHLCaSLqigtMCzZD1_veztn3AXxfhnUkGCNasIMvaZ4yygnjeUDZHpXOeu9AlZ3TjXCfJcHlt-YyaC5HzeWoOaSuxgFD1UB9yPx6DcDNHvhJ28G1Yd9_K78ATZGN9A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2753291397</pqid></control><display><type>article</type><title>Tailoring Cooperative Emission in Molecules: Superradiance and Subradiance from First-Principles Simulations</title><source>ACS Publications</source><creator>Bustamante, Carlos M. ; Gadea, Esteban D. ; Todorov, Tchavdar N. ; Scherlis, Damián A.</creator><creatorcontrib>Bustamante, Carlos M. ; Gadea, Esteban D. ; Todorov, Tchavdar N. ; Scherlis, Damián A.</creatorcontrib><description>Cooperative optical effects provide a pathway to both the amplification (superradiance) and the suppression (subradiance) of photon emission from electronically excited states. These captivating phenomena offer a rich variety of possibilities for photonic technologies aimed at electromagnetic energy manipulation, including lasers and high-speed emitting devices in the case of superradiance or optical energy storage in that of subradiance. The employment of molecules as the building pieces in these developments requires a precise understanding of the roles of separation, orientation, spatial distribution, and applied fields, which remains challenging for theory and experiments. These questions are addressed here through ab initio quantum dynamics simulations of collective emission on the basis of a novel semiclassical formalism and time-dependent density functional theory. By establishing the configurations leading to decoherence and how the fine-tuning of a pulse can accumulate or release optical energy in H2 arrays, this report provides fundamental insight toward the design of real superradiant and subradiant devices.</description><identifier>ISSN: 1948-7185</identifier><identifier>EISSN: 1948-7185</identifier><identifier>DOI: 10.1021/acs.jpclett.2c02795</identifier><identifier>PMID: 36480910</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Physical Insights into Light Interacting with Matter</subject><ispartof>The journal of physical chemistry letters, 2022-12, Vol.13 (50), p.11601-11609</ispartof><rights>2022 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a390t-28c4f1ef67bed18024362ff14130c2e71e31cda2f16bc3c59e371924adb9a0283</citedby><cites>FETCH-LOGICAL-a390t-28c4f1ef67bed18024362ff14130c2e71e31cda2f16bc3c59e371924adb9a0283</cites><orcidid>0000-0002-0588-287X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpclett.2c02795$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpclett.2c02795$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2763,27075,27923,27924,56737,56787</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36480910$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bustamante, Carlos M.</creatorcontrib><creatorcontrib>Gadea, Esteban D.</creatorcontrib><creatorcontrib>Todorov, Tchavdar N.</creatorcontrib><creatorcontrib>Scherlis, Damián A.</creatorcontrib><title>Tailoring Cooperative Emission in Molecules: Superradiance and Subradiance from First-Principles Simulations</title><title>The journal of physical chemistry letters</title><addtitle>J. Phys. Chem. Lett</addtitle><description>Cooperative optical effects provide a pathway to both the amplification (superradiance) and the suppression (subradiance) of photon emission from electronically excited states. These captivating phenomena offer a rich variety of possibilities for photonic technologies aimed at electromagnetic energy manipulation, including lasers and high-speed emitting devices in the case of superradiance or optical energy storage in that of subradiance. The employment of molecules as the building pieces in these developments requires a precise understanding of the roles of separation, orientation, spatial distribution, and applied fields, which remains challenging for theory and experiments. These questions are addressed here through ab initio quantum dynamics simulations of collective emission on the basis of a novel semiclassical formalism and time-dependent density functional theory. By establishing the configurations leading to decoherence and how the fine-tuning of a pulse can accumulate or release optical energy in H2 arrays, this report provides fundamental insight toward the design of real superradiant and subradiant devices.</description><subject>Physical Insights into Light Interacting with Matter</subject><issn>1948-7185</issn><issn>1948-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kFtLwzAYhoMobk5_gSC99KYzh57inYxNhYnC5nVJ0y-SkTY1aQX_vdHV4ZVXOfC878f3IHRJ8JxgSm6E9PNdJw30_ZxKTHOeHqEp4UkR56RIj__cJ-jM-x3GGcdFfoomLEsKzAmeIrMV2lin27doYW0HTvT6A6Jlo73Xto10Gz1ZA3Iw4G-jzRAIJ2otWgmRaOvwUx3eytkmWmnn-_glNErdhVC00c1gQqtt_Tk6UcJ4uBjPGXpdLbeLh3j9fP-4uFvHgnHcx7SQiSKgsryCmhSYJiyjSpGEMCwp5AQYkbWgimSVZDLlwHLCaSLqigtMCzZD1_veztn3AXxfhnUkGCNasIMvaZ4yygnjeUDZHpXOeu9AlZ3TjXCfJcHlt-YyaC5HzeWoOaSuxgFD1UB9yPx6DcDNHvhJ28G1Yd9_K78ATZGN9A</recordid><startdate>20221222</startdate><enddate>20221222</enddate><creator>Bustamante, Carlos M.</creator><creator>Gadea, Esteban D.</creator><creator>Todorov, Tchavdar N.</creator><creator>Scherlis, Damián A.</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0588-287X</orcidid></search><sort><creationdate>20221222</creationdate><title>Tailoring Cooperative Emission in Molecules: Superradiance and Subradiance from First-Principles Simulations</title><author>Bustamante, Carlos M. ; Gadea, Esteban D. ; Todorov, Tchavdar N. ; Scherlis, Damián A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a390t-28c4f1ef67bed18024362ff14130c2e71e31cda2f16bc3c59e371924adb9a0283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Physical Insights into Light Interacting with Matter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bustamante, Carlos M.</creatorcontrib><creatorcontrib>Gadea, Esteban D.</creatorcontrib><creatorcontrib>Todorov, Tchavdar N.</creatorcontrib><creatorcontrib>Scherlis, Damián A.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bustamante, Carlos M.</au><au>Gadea, Esteban D.</au><au>Todorov, Tchavdar N.</au><au>Scherlis, Damián A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tailoring Cooperative Emission in Molecules: Superradiance and Subradiance from First-Principles Simulations</atitle><jtitle>The journal of physical chemistry letters</jtitle><addtitle>J. Phys. Chem. Lett</addtitle><date>2022-12-22</date><risdate>2022</risdate><volume>13</volume><issue>50</issue><spage>11601</spage><epage>11609</epage><pages>11601-11609</pages><issn>1948-7185</issn><eissn>1948-7185</eissn><abstract>Cooperative optical effects provide a pathway to both the amplification (superradiance) and the suppression (subradiance) of photon emission from electronically excited states. These captivating phenomena offer a rich variety of possibilities for photonic technologies aimed at electromagnetic energy manipulation, including lasers and high-speed emitting devices in the case of superradiance or optical energy storage in that of subradiance. The employment of molecules as the building pieces in these developments requires a precise understanding of the roles of separation, orientation, spatial distribution, and applied fields, which remains challenging for theory and experiments. These questions are addressed here through ab initio quantum dynamics simulations of collective emission on the basis of a novel semiclassical formalism and time-dependent density functional theory. By establishing the configurations leading to decoherence and how the fine-tuning of a pulse can accumulate or release optical energy in H2 arrays, this report provides fundamental insight toward the design of real superradiant and subradiant devices.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>36480910</pmid><doi>10.1021/acs.jpclett.2c02795</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-0588-287X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1948-7185
ispartof The journal of physical chemistry letters, 2022-12, Vol.13 (50), p.11601-11609
issn 1948-7185
1948-7185
language eng
recordid cdi_proquest_miscellaneous_2753291397
source ACS Publications
subjects Physical Insights into Light Interacting with Matter
title Tailoring Cooperative Emission in Molecules: Superradiance and Subradiance from First-Principles Simulations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T09%3A43%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tailoring%20Cooperative%20Emission%20in%20Molecules:%20Superradiance%20and%20Subradiance%20from%20First-Principles%20Simulations&rft.jtitle=The%20journal%20of%20physical%20chemistry%20letters&rft.au=Bustamante,%20Carlos%20M.&rft.date=2022-12-22&rft.volume=13&rft.issue=50&rft.spage=11601&rft.epage=11609&rft.pages=11601-11609&rft.issn=1948-7185&rft.eissn=1948-7185&rft_id=info:doi/10.1021/acs.jpclett.2c02795&rft_dat=%3Cproquest_cross%3E2753291397%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2753291397&rft_id=info:pmid/36480910&rfr_iscdi=true