Geometrically-Aware Interactive Object Manipulation

This paper describes formulation and management of constraints, and a nonlinear optimization algorithm that together enable interactive geometrically aware manipulation of articulated objects. Going beyond purely kinematic or dynamic approaches, our solution method directly employs geometric constra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer graphics forum 2000-03, Vol.19 (1), p.65-76
Hauptverfasser: Choi, Min-Hyung, Cremer, James F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 76
container_issue 1
container_start_page 65
container_title Computer graphics forum
container_volume 19
creator Choi, Min-Hyung
Cremer, James F.
description This paper describes formulation and management of constraints, and a nonlinear optimization algorithm that together enable interactive geometrically aware manipulation of articulated objects. Going beyond purely kinematic or dynamic approaches, our solution method directly employs geometric constraints to ensure non‐interpenetration during object manipulation. We present the formulation of the inequality constraints used to ensure nonpenetration, describe how to manage the set of active inequality constraints as objects move, and show how these results are combined with a nonlinear optimization algorithm to achieve interactive geometrically aware object manipulation. Our optimization algorithm handles equality and inequality constraints and does not restrict object topology. It is an efficient iterative algorithm, quadratically convergent, with each iteration bounded by O(nnz(L)), where nnz(L) is the number of non‐zeros in L, a Cholesky factor of a sparse matrix.
doi_str_mv 10.1111/1467-8659.00388
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27527930</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>27527930</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3378-b88576ea233de8ec78c6889baf6a35f3036f4c20b2fe33efd9eefa2251ac659e3</originalsourceid><addsrcrecordid>eNqNkE1PAjEQhhujiYievXLyttBttx97JEQWIkpUlGPTLdOkuOxiu4j8exfXeNW5zGTyPJPJi9B1jPtxU4M44SKSnKV9jKmUJ6jzuzlFHRw3s8CMnaOLENYY40Rw1kE0g2oDtXdGF8UhGu61h960rMFrU7sP6M3zNZi6d69Lt90VunZVeYnOrC4CXP30LnoZ3y5Gk2g2z6aj4SwylAoZ5VIywUETSlcgwQhpuJRpri3XlFmKKbeJITgnFigFu0oBrCaExdo0TwPtopv27tZX7zsItdq4YKAodAnVLigiGBFpc-c_ICMyacBBCxpfheDBqq13G-0PKsbqmKI6ZqaOmanvFBuDtsbeFXD4C1ejbNxaUWu5UMPnr6X9m-KCCqaWD5laTO6el_zpVT3SL34qguc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27525284</pqid></control><display><type>article</type><title>Geometrically-Aware Interactive Object Manipulation</title><source>Wiley Journals</source><source>Business Source Complete</source><creator>Choi, Min-Hyung ; Cremer, James F.</creator><creatorcontrib>Choi, Min-Hyung ; Cremer, James F.</creatorcontrib><description>This paper describes formulation and management of constraints, and a nonlinear optimization algorithm that together enable interactive geometrically aware manipulation of articulated objects. Going beyond purely kinematic or dynamic approaches, our solution method directly employs geometric constraints to ensure non‐interpenetration during object manipulation. We present the formulation of the inequality constraints used to ensure nonpenetration, describe how to manage the set of active inequality constraints as objects move, and show how these results are combined with a nonlinear optimization algorithm to achieve interactive geometrically aware object manipulation. Our optimization algorithm handles equality and inequality constraints and does not restrict object topology. It is an efficient iterative algorithm, quadratically convergent, with each iteration bounded by O(nnz(L)), where nnz(L) is the number of non‐zeros in L, a Cholesky factor of a sparse matrix.</description><identifier>ISSN: 0167-7055</identifier><identifier>EISSN: 1467-8659</identifier><identifier>DOI: 10.1111/1467-8659.00388</identifier><language>eng</language><publisher>Oxford, UK and Boston, USA: Blackwell Publishers</publisher><subject>Cholesky ; constraints ; geometry awareness ; nonlinear optimization ; object manipulation</subject><ispartof>Computer graphics forum, 2000-03, Vol.19 (1), p.65-76</ispartof><rights>The Eurographics Association 2000</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2F1467-8659.00388$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2F1467-8659.00388$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Choi, Min-Hyung</creatorcontrib><creatorcontrib>Cremer, James F.</creatorcontrib><title>Geometrically-Aware Interactive Object Manipulation</title><title>Computer graphics forum</title><description>This paper describes formulation and management of constraints, and a nonlinear optimization algorithm that together enable interactive geometrically aware manipulation of articulated objects. Going beyond purely kinematic or dynamic approaches, our solution method directly employs geometric constraints to ensure non‐interpenetration during object manipulation. We present the formulation of the inequality constraints used to ensure nonpenetration, describe how to manage the set of active inequality constraints as objects move, and show how these results are combined with a nonlinear optimization algorithm to achieve interactive geometrically aware object manipulation. Our optimization algorithm handles equality and inequality constraints and does not restrict object topology. It is an efficient iterative algorithm, quadratically convergent, with each iteration bounded by O(nnz(L)), where nnz(L) is the number of non‐zeros in L, a Cholesky factor of a sparse matrix.</description><subject>Cholesky</subject><subject>constraints</subject><subject>geometry awareness</subject><subject>nonlinear optimization</subject><subject>object manipulation</subject><issn>0167-7055</issn><issn>1467-8659</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNqNkE1PAjEQhhujiYievXLyttBttx97JEQWIkpUlGPTLdOkuOxiu4j8exfXeNW5zGTyPJPJi9B1jPtxU4M44SKSnKV9jKmUJ6jzuzlFHRw3s8CMnaOLENYY40Rw1kE0g2oDtXdGF8UhGu61h960rMFrU7sP6M3zNZi6d69Lt90VunZVeYnOrC4CXP30LnoZ3y5Gk2g2z6aj4SwylAoZ5VIywUETSlcgwQhpuJRpri3XlFmKKbeJITgnFigFu0oBrCaExdo0TwPtopv27tZX7zsItdq4YKAodAnVLigiGBFpc-c_ICMyacBBCxpfheDBqq13G-0PKsbqmKI6ZqaOmanvFBuDtsbeFXD4C1ejbNxaUWu5UMPnr6X9m-KCCqaWD5laTO6el_zpVT3SL34qguc</recordid><startdate>200003</startdate><enddate>200003</enddate><creator>Choi, Min-Hyung</creator><creator>Cremer, James F.</creator><general>Blackwell Publishers</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>7SC</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>200003</creationdate><title>Geometrically-Aware Interactive Object Manipulation</title><author>Choi, Min-Hyung ; Cremer, James F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3378-b88576ea233de8ec78c6889baf6a35f3036f4c20b2fe33efd9eefa2251ac659e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Cholesky</topic><topic>constraints</topic><topic>geometry awareness</topic><topic>nonlinear optimization</topic><topic>object manipulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Choi, Min-Hyung</creatorcontrib><creatorcontrib>Cremer, James F.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer graphics forum</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Choi, Min-Hyung</au><au>Cremer, James F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Geometrically-Aware Interactive Object Manipulation</atitle><jtitle>Computer graphics forum</jtitle><date>2000-03</date><risdate>2000</risdate><volume>19</volume><issue>1</issue><spage>65</spage><epage>76</epage><pages>65-76</pages><issn>0167-7055</issn><eissn>1467-8659</eissn><abstract>This paper describes formulation and management of constraints, and a nonlinear optimization algorithm that together enable interactive geometrically aware manipulation of articulated objects. Going beyond purely kinematic or dynamic approaches, our solution method directly employs geometric constraints to ensure non‐interpenetration during object manipulation. We present the formulation of the inequality constraints used to ensure nonpenetration, describe how to manage the set of active inequality constraints as objects move, and show how these results are combined with a nonlinear optimization algorithm to achieve interactive geometrically aware object manipulation. Our optimization algorithm handles equality and inequality constraints and does not restrict object topology. It is an efficient iterative algorithm, quadratically convergent, with each iteration bounded by O(nnz(L)), where nnz(L) is the number of non‐zeros in L, a Cholesky factor of a sparse matrix.</abstract><cop>Oxford, UK and Boston, USA</cop><pub>Blackwell Publishers</pub><doi>10.1111/1467-8659.00388</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0167-7055
ispartof Computer graphics forum, 2000-03, Vol.19 (1), p.65-76
issn 0167-7055
1467-8659
language eng
recordid cdi_proquest_miscellaneous_27527930
source Wiley Journals; Business Source Complete
subjects Cholesky
constraints
geometry awareness
nonlinear optimization
object manipulation
title Geometrically-Aware Interactive Object Manipulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T12%3A59%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Geometrically-Aware%20Interactive%20Object%20Manipulation&rft.jtitle=Computer%20graphics%20forum&rft.au=Choi,%20Min-Hyung&rft.date=2000-03&rft.volume=19&rft.issue=1&rft.spage=65&rft.epage=76&rft.pages=65-76&rft.issn=0167-7055&rft.eissn=1467-8659&rft_id=info:doi/10.1111/1467-8659.00388&rft_dat=%3Cproquest_cross%3E27527930%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27525284&rft_id=info:pmid/&rfr_iscdi=true