Geometrically-Aware Interactive Object Manipulation
This paper describes formulation and management of constraints, and a nonlinear optimization algorithm that together enable interactive geometrically aware manipulation of articulated objects. Going beyond purely kinematic or dynamic approaches, our solution method directly employs geometric constra...
Gespeichert in:
Veröffentlicht in: | Computer graphics forum 2000-03, Vol.19 (1), p.65-76 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 76 |
---|---|
container_issue | 1 |
container_start_page | 65 |
container_title | Computer graphics forum |
container_volume | 19 |
creator | Choi, Min-Hyung Cremer, James F. |
description | This paper describes formulation and management of constraints, and a nonlinear optimization algorithm that together enable interactive geometrically aware manipulation of articulated objects. Going beyond purely kinematic or dynamic approaches, our solution method directly employs geometric constraints to ensure non‐interpenetration during object manipulation. We present the formulation of the inequality constraints used to ensure nonpenetration, describe how to manage the set of active inequality constraints as objects move, and show how these results are combined with a nonlinear optimization algorithm to achieve interactive geometrically aware object manipulation. Our optimization algorithm handles equality and inequality constraints and does not restrict object topology. It is an efficient iterative algorithm, quadratically convergent, with each iteration bounded by O(nnz(L)), where nnz(L) is the number of non‐zeros in L, a Cholesky factor of a sparse matrix. |
doi_str_mv | 10.1111/1467-8659.00388 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27527930</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>27527930</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3378-b88576ea233de8ec78c6889baf6a35f3036f4c20b2fe33efd9eefa2251ac659e3</originalsourceid><addsrcrecordid>eNqNkE1PAjEQhhujiYievXLyttBttx97JEQWIkpUlGPTLdOkuOxiu4j8exfXeNW5zGTyPJPJi9B1jPtxU4M44SKSnKV9jKmUJ6jzuzlFHRw3s8CMnaOLENYY40Rw1kE0g2oDtXdGF8UhGu61h960rMFrU7sP6M3zNZi6d69Lt90VunZVeYnOrC4CXP30LnoZ3y5Gk2g2z6aj4SwylAoZ5VIywUETSlcgwQhpuJRpri3XlFmKKbeJITgnFigFu0oBrCaExdo0TwPtopv27tZX7zsItdq4YKAodAnVLigiGBFpc-c_ICMyacBBCxpfheDBqq13G-0PKsbqmKI6ZqaOmanvFBuDtsbeFXD4C1ejbNxaUWu5UMPnr6X9m-KCCqaWD5laTO6el_zpVT3SL34qguc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27525284</pqid></control><display><type>article</type><title>Geometrically-Aware Interactive Object Manipulation</title><source>Wiley Journals</source><source>Business Source Complete</source><creator>Choi, Min-Hyung ; Cremer, James F.</creator><creatorcontrib>Choi, Min-Hyung ; Cremer, James F.</creatorcontrib><description>This paper describes formulation and management of constraints, and a nonlinear optimization algorithm that together enable interactive geometrically aware manipulation of articulated objects. Going beyond purely kinematic or dynamic approaches, our solution method directly employs geometric constraints to ensure non‐interpenetration during object manipulation. We present the formulation of the inequality constraints used to ensure nonpenetration, describe how to manage the set of active inequality constraints as objects move, and show how these results are combined with a nonlinear optimization algorithm to achieve interactive geometrically aware object manipulation. Our optimization algorithm handles equality and inequality constraints and does not restrict object topology. It is an efficient iterative algorithm, quadratically convergent, with each iteration bounded by O(nnz(L)), where nnz(L) is the number of non‐zeros in L, a Cholesky factor of a sparse matrix.</description><identifier>ISSN: 0167-7055</identifier><identifier>EISSN: 1467-8659</identifier><identifier>DOI: 10.1111/1467-8659.00388</identifier><language>eng</language><publisher>Oxford, UK and Boston, USA: Blackwell Publishers</publisher><subject>Cholesky ; constraints ; geometry awareness ; nonlinear optimization ; object manipulation</subject><ispartof>Computer graphics forum, 2000-03, Vol.19 (1), p.65-76</ispartof><rights>The Eurographics Association 2000</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2F1467-8659.00388$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2F1467-8659.00388$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Choi, Min-Hyung</creatorcontrib><creatorcontrib>Cremer, James F.</creatorcontrib><title>Geometrically-Aware Interactive Object Manipulation</title><title>Computer graphics forum</title><description>This paper describes formulation and management of constraints, and a nonlinear optimization algorithm that together enable interactive geometrically aware manipulation of articulated objects. Going beyond purely kinematic or dynamic approaches, our solution method directly employs geometric constraints to ensure non‐interpenetration during object manipulation. We present the formulation of the inequality constraints used to ensure nonpenetration, describe how to manage the set of active inequality constraints as objects move, and show how these results are combined with a nonlinear optimization algorithm to achieve interactive geometrically aware object manipulation. Our optimization algorithm handles equality and inequality constraints and does not restrict object topology. It is an efficient iterative algorithm, quadratically convergent, with each iteration bounded by O(nnz(L)), where nnz(L) is the number of non‐zeros in L, a Cholesky factor of a sparse matrix.</description><subject>Cholesky</subject><subject>constraints</subject><subject>geometry awareness</subject><subject>nonlinear optimization</subject><subject>object manipulation</subject><issn>0167-7055</issn><issn>1467-8659</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNqNkE1PAjEQhhujiYievXLyttBttx97JEQWIkpUlGPTLdOkuOxiu4j8exfXeNW5zGTyPJPJi9B1jPtxU4M44SKSnKV9jKmUJ6jzuzlFHRw3s8CMnaOLENYY40Rw1kE0g2oDtXdGF8UhGu61h960rMFrU7sP6M3zNZi6d69Lt90VunZVeYnOrC4CXP30LnoZ3y5Gk2g2z6aj4SwylAoZ5VIywUETSlcgwQhpuJRpri3XlFmKKbeJITgnFigFu0oBrCaExdo0TwPtopv27tZX7zsItdq4YKAodAnVLigiGBFpc-c_ICMyacBBCxpfheDBqq13G-0PKsbqmKI6ZqaOmanvFBuDtsbeFXD4C1ejbNxaUWu5UMPnr6X9m-KCCqaWD5laTO6el_zpVT3SL34qguc</recordid><startdate>200003</startdate><enddate>200003</enddate><creator>Choi, Min-Hyung</creator><creator>Cremer, James F.</creator><general>Blackwell Publishers</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>7SC</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>200003</creationdate><title>Geometrically-Aware Interactive Object Manipulation</title><author>Choi, Min-Hyung ; Cremer, James F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3378-b88576ea233de8ec78c6889baf6a35f3036f4c20b2fe33efd9eefa2251ac659e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Cholesky</topic><topic>constraints</topic><topic>geometry awareness</topic><topic>nonlinear optimization</topic><topic>object manipulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Choi, Min-Hyung</creatorcontrib><creatorcontrib>Cremer, James F.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer graphics forum</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Choi, Min-Hyung</au><au>Cremer, James F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Geometrically-Aware Interactive Object Manipulation</atitle><jtitle>Computer graphics forum</jtitle><date>2000-03</date><risdate>2000</risdate><volume>19</volume><issue>1</issue><spage>65</spage><epage>76</epage><pages>65-76</pages><issn>0167-7055</issn><eissn>1467-8659</eissn><abstract>This paper describes formulation and management of constraints, and a nonlinear optimization algorithm that together enable interactive geometrically aware manipulation of articulated objects. Going beyond purely kinematic or dynamic approaches, our solution method directly employs geometric constraints to ensure non‐interpenetration during object manipulation. We present the formulation of the inequality constraints used to ensure nonpenetration, describe how to manage the set of active inequality constraints as objects move, and show how these results are combined with a nonlinear optimization algorithm to achieve interactive geometrically aware object manipulation. Our optimization algorithm handles equality and inequality constraints and does not restrict object topology. It is an efficient iterative algorithm, quadratically convergent, with each iteration bounded by O(nnz(L)), where nnz(L) is the number of non‐zeros in L, a Cholesky factor of a sparse matrix.</abstract><cop>Oxford, UK and Boston, USA</cop><pub>Blackwell Publishers</pub><doi>10.1111/1467-8659.00388</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-7055 |
ispartof | Computer graphics forum, 2000-03, Vol.19 (1), p.65-76 |
issn | 0167-7055 1467-8659 |
language | eng |
recordid | cdi_proquest_miscellaneous_27527930 |
source | Wiley Journals; Business Source Complete |
subjects | Cholesky constraints geometry awareness nonlinear optimization object manipulation |
title | Geometrically-Aware Interactive Object Manipulation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T12%3A59%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Geometrically-Aware%20Interactive%20Object%20Manipulation&rft.jtitle=Computer%20graphics%20forum&rft.au=Choi,%20Min-Hyung&rft.date=2000-03&rft.volume=19&rft.issue=1&rft.spage=65&rft.epage=76&rft.pages=65-76&rft.issn=0167-7055&rft.eissn=1467-8659&rft_id=info:doi/10.1111/1467-8659.00388&rft_dat=%3Cproquest_cross%3E27527930%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27525284&rft_id=info:pmid/&rfr_iscdi=true |