Forecasting S&P 500 stock index futures with a hybrid AI system
This study presents a hybrid AI (artificial intelligence) approach to the implementation of trading strategies in the S&P 500 stock index futures market. The hybrid AI approach integrates the rule-based systems technique and the neural networks technique to accurately predict the direction of da...
Gespeichert in:
Veröffentlicht in: | Decision Support Systems 1998-06, Vol.23 (2), p.161-174 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 174 |
---|---|
container_issue | 2 |
container_start_page | 161 |
container_title | Decision Support Systems |
container_volume | 23 |
creator | Tsaih, Ray Hsu, Yenshan Lai, Charles C. |
description | This study presents a hybrid AI (artificial intelligence) approach to the implementation of trading strategies in the S&P 500 stock index futures market. The hybrid AI approach integrates the rule-based systems technique and the neural networks technique to accurately predict the direction of daily price changes in S&P 500 stock index futures. By highlighting the advantages and overcoming the limitations of both the neural networks technique and rule-based systems technique, the hybrid approach can facilitate the development of more reliable intelligent systems to model expert thinking and to support the decision-making processes. Our methodology differs from other studies in two respects. First, the rule-based systems approach is applied to provide neural networks with training examples. Second, we employ Reasoning Neural Networks (RN) instead of Back Propagation Networks. Empirical results demonstrate that RN outperforms the other two ANN models (Back Propagation Networks and Perceptron). Based upon this hybrid AI approach, the integrated futures trading system (IFTS) is established and employed to trade the S&P 500 stock index futures contracts. Empirical results also confirm that IFTS outperformed the passive buy-and-hold investment strategy during the 6-year testing period from 1988 to 1993. |
doi_str_mv | 10.1016/S0167-9236(98)00028-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27527368</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167923698000281</els_id><sourcerecordid>35018846</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-bffd47f27850929849316b8d9fff7cadb54c986bda43664ba21c28afa18f39ee3</originalsourceid><addsrcrecordid>eNqFkMtKAzEUhoMoWKuPIASRoovRXGZyWZVSrBYKCtV1yGQSm9rO1GRG7ds7vaDgxs05m-__z-ED4ByjG4wwu522gyeSUHYlxTVCiIgEH4AOFpwmGZf8EHR-kGNwEuMcIUa5YB3QH1XBGh1rX77Cae8JZgjBWFfmDfqysF_QNXUTbISfvp5BDWfrPPgCDsYwrmNtl6fgyOlFtGf73QUvo7vn4UMyebwfDweTxFCG6yR3rki5I1xkSBIpUkkxy0UhnXPc6CLPUiMFywudUsbSXBNsiNBOY-GotJZ2QW_XuwrVe2NjrZY-GrtY6NJWTVSEZ4RTJlrw4g84r5pQtr8pglgmJRVpC2U7yIQqxmCdWgW_1GGtMFIbp2rrVG2EKSnU1qnCbe5yX66j0QsXdGl8_A1zklLOW6y_w2xr5MPboKLxtjS28K3sWhWV_-fQN4pniOI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>206599384</pqid></control><display><type>article</type><title>Forecasting S&P 500 stock index futures with a hybrid AI system</title><source>Elsevier ScienceDirect Journals</source><creator>Tsaih, Ray ; Hsu, Yenshan ; Lai, Charles C.</creator><creatorcontrib>Tsaih, Ray ; Hsu, Yenshan ; Lai, Charles C.</creatorcontrib><description>This study presents a hybrid AI (artificial intelligence) approach to the implementation of trading strategies in the S&P 500 stock index futures market. The hybrid AI approach integrates the rule-based systems technique and the neural networks technique to accurately predict the direction of daily price changes in S&P 500 stock index futures. By highlighting the advantages and overcoming the limitations of both the neural networks technique and rule-based systems technique, the hybrid approach can facilitate the development of more reliable intelligent systems to model expert thinking and to support the decision-making processes. Our methodology differs from other studies in two respects. First, the rule-based systems approach is applied to provide neural networks with training examples. Second, we employ Reasoning Neural Networks (RN) instead of Back Propagation Networks. Empirical results demonstrate that RN outperforms the other two ANN models (Back Propagation Networks and Perceptron). Based upon this hybrid AI approach, the integrated futures trading system (IFTS) is established and employed to trade the S&P 500 stock index futures contracts. Empirical results also confirm that IFTS outperformed the passive buy-and-hold investment strategy during the 6-year testing period from 1988 to 1993.</description><identifier>ISSN: 0167-9236</identifier><identifier>EISSN: 1873-5797</identifier><identifier>DOI: 10.1016/S0167-9236(98)00028-1</identifier><identifier>CODEN: DSSYDK</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Artificial intelligence ; Back propagation ; Back Propagation Networks ; Decision support systems ; Exact sciences and technology ; Futures ; Hybrid AI system ; Neural networks ; Operational research and scientific management ; Operational research. Management science ; Portfolio theory ; Reasoning Neural Networks ; Rule-based system ; S&P 500 stock index futures ; Stock index futures ; Studies</subject><ispartof>Decision Support Systems, 1998-06, Vol.23 (2), p.161-174</ispartof><rights>1998 Elsevier Science B.V.</rights><rights>1999 INIST-CNRS</rights><rights>Copyright Elsevier Sequoia S.A. Jun 1998</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-bffd47f27850929849316b8d9fff7cadb54c986bda43664ba21c28afa18f39ee3</citedby><cites>FETCH-LOGICAL-c361t-bffd47f27850929849316b8d9fff7cadb54c986bda43664ba21c28afa18f39ee3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0167923698000281$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1724377$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Tsaih, Ray</creatorcontrib><creatorcontrib>Hsu, Yenshan</creatorcontrib><creatorcontrib>Lai, Charles C.</creatorcontrib><title>Forecasting S&P 500 stock index futures with a hybrid AI system</title><title>Decision Support Systems</title><description>This study presents a hybrid AI (artificial intelligence) approach to the implementation of trading strategies in the S&P 500 stock index futures market. The hybrid AI approach integrates the rule-based systems technique and the neural networks technique to accurately predict the direction of daily price changes in S&P 500 stock index futures. By highlighting the advantages and overcoming the limitations of both the neural networks technique and rule-based systems technique, the hybrid approach can facilitate the development of more reliable intelligent systems to model expert thinking and to support the decision-making processes. Our methodology differs from other studies in two respects. First, the rule-based systems approach is applied to provide neural networks with training examples. Second, we employ Reasoning Neural Networks (RN) instead of Back Propagation Networks. Empirical results demonstrate that RN outperforms the other two ANN models (Back Propagation Networks and Perceptron). Based upon this hybrid AI approach, the integrated futures trading system (IFTS) is established and employed to trade the S&P 500 stock index futures contracts. Empirical results also confirm that IFTS outperformed the passive buy-and-hold investment strategy during the 6-year testing period from 1988 to 1993.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Back propagation</subject><subject>Back Propagation Networks</subject><subject>Decision support systems</subject><subject>Exact sciences and technology</subject><subject>Futures</subject><subject>Hybrid AI system</subject><subject>Neural networks</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Portfolio theory</subject><subject>Reasoning Neural Networks</subject><subject>Rule-based system</subject><subject>S&P 500 stock index futures</subject><subject>Stock index futures</subject><subject>Studies</subject><issn>0167-9236</issn><issn>1873-5797</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNqFkMtKAzEUhoMoWKuPIASRoovRXGZyWZVSrBYKCtV1yGQSm9rO1GRG7ds7vaDgxs05m-__z-ED4ByjG4wwu522gyeSUHYlxTVCiIgEH4AOFpwmGZf8EHR-kGNwEuMcIUa5YB3QH1XBGh1rX77Cae8JZgjBWFfmDfqysF_QNXUTbISfvp5BDWfrPPgCDsYwrmNtl6fgyOlFtGf73QUvo7vn4UMyebwfDweTxFCG6yR3rki5I1xkSBIpUkkxy0UhnXPc6CLPUiMFywudUsbSXBNsiNBOY-GotJZ2QW_XuwrVe2NjrZY-GrtY6NJWTVSEZ4RTJlrw4g84r5pQtr8pglgmJRVpC2U7yIQqxmCdWgW_1GGtMFIbp2rrVG2EKSnU1qnCbe5yX66j0QsXdGl8_A1zklLOW6y_w2xr5MPboKLxtjS28K3sWhWV_-fQN4pniOI</recordid><startdate>19980601</startdate><enddate>19980601</enddate><creator>Tsaih, Ray</creator><creator>Hsu, Yenshan</creator><creator>Lai, Charles C.</creator><general>Elsevier B.V</general><general>Elsevier Science</general><general>Elsevier Sequoia S.A</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19980601</creationdate><title>Forecasting S&P 500 stock index futures with a hybrid AI system</title><author>Tsaih, Ray ; Hsu, Yenshan ; Lai, Charles C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-bffd47f27850929849316b8d9fff7cadb54c986bda43664ba21c28afa18f39ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Back propagation</topic><topic>Back Propagation Networks</topic><topic>Decision support systems</topic><topic>Exact sciences and technology</topic><topic>Futures</topic><topic>Hybrid AI system</topic><topic>Neural networks</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Portfolio theory</topic><topic>Reasoning Neural Networks</topic><topic>Rule-based system</topic><topic>S&P 500 stock index futures</topic><topic>Stock index futures</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tsaih, Ray</creatorcontrib><creatorcontrib>Hsu, Yenshan</creatorcontrib><creatorcontrib>Lai, Charles C.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Decision Support Systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tsaih, Ray</au><au>Hsu, Yenshan</au><au>Lai, Charles C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Forecasting S&P 500 stock index futures with a hybrid AI system</atitle><jtitle>Decision Support Systems</jtitle><date>1998-06-01</date><risdate>1998</risdate><volume>23</volume><issue>2</issue><spage>161</spage><epage>174</epage><pages>161-174</pages><issn>0167-9236</issn><eissn>1873-5797</eissn><coden>DSSYDK</coden><abstract>This study presents a hybrid AI (artificial intelligence) approach to the implementation of trading strategies in the S&P 500 stock index futures market. The hybrid AI approach integrates the rule-based systems technique and the neural networks technique to accurately predict the direction of daily price changes in S&P 500 stock index futures. By highlighting the advantages and overcoming the limitations of both the neural networks technique and rule-based systems technique, the hybrid approach can facilitate the development of more reliable intelligent systems to model expert thinking and to support the decision-making processes. Our methodology differs from other studies in two respects. First, the rule-based systems approach is applied to provide neural networks with training examples. Second, we employ Reasoning Neural Networks (RN) instead of Back Propagation Networks. Empirical results demonstrate that RN outperforms the other two ANN models (Back Propagation Networks and Perceptron). Based upon this hybrid AI approach, the integrated futures trading system (IFTS) is established and employed to trade the S&P 500 stock index futures contracts. Empirical results also confirm that IFTS outperformed the passive buy-and-hold investment strategy during the 6-year testing period from 1988 to 1993.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/S0167-9236(98)00028-1</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-9236 |
ispartof | Decision Support Systems, 1998-06, Vol.23 (2), p.161-174 |
issn | 0167-9236 1873-5797 |
language | eng |
recordid | cdi_proquest_miscellaneous_27527368 |
source | Elsevier ScienceDirect Journals |
subjects | Applied sciences Artificial intelligence Back propagation Back Propagation Networks Decision support systems Exact sciences and technology Futures Hybrid AI system Neural networks Operational research and scientific management Operational research. Management science Portfolio theory Reasoning Neural Networks Rule-based system S&P 500 stock index futures Stock index futures Studies |
title | Forecasting S&P 500 stock index futures with a hybrid AI system |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T21%3A44%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Forecasting%20S&P%20500%20stock%20index%20futures%20with%20a%20hybrid%20AI%20system&rft.jtitle=Decision%20Support%20Systems&rft.au=Tsaih,%20Ray&rft.date=1998-06-01&rft.volume=23&rft.issue=2&rft.spage=161&rft.epage=174&rft.pages=161-174&rft.issn=0167-9236&rft.eissn=1873-5797&rft.coden=DSSYDK&rft_id=info:doi/10.1016/S0167-9236(98)00028-1&rft_dat=%3Cproquest_cross%3E35018846%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=206599384&rft_id=info:pmid/&rft_els_id=S0167923698000281&rfr_iscdi=true |