Forecasting S&P 500 stock index futures with a hybrid AI system

This study presents a hybrid AI (artificial intelligence) approach to the implementation of trading strategies in the S&P 500 stock index futures market. The hybrid AI approach integrates the rule-based systems technique and the neural networks technique to accurately predict the direction of da...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Decision Support Systems 1998-06, Vol.23 (2), p.161-174
Hauptverfasser: Tsaih, Ray, Hsu, Yenshan, Lai, Charles C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 174
container_issue 2
container_start_page 161
container_title Decision Support Systems
container_volume 23
creator Tsaih, Ray
Hsu, Yenshan
Lai, Charles C.
description This study presents a hybrid AI (artificial intelligence) approach to the implementation of trading strategies in the S&P 500 stock index futures market. The hybrid AI approach integrates the rule-based systems technique and the neural networks technique to accurately predict the direction of daily price changes in S&P 500 stock index futures. By highlighting the advantages and overcoming the limitations of both the neural networks technique and rule-based systems technique, the hybrid approach can facilitate the development of more reliable intelligent systems to model expert thinking and to support the decision-making processes. Our methodology differs from other studies in two respects. First, the rule-based systems approach is applied to provide neural networks with training examples. Second, we employ Reasoning Neural Networks (RN) instead of Back Propagation Networks. Empirical results demonstrate that RN outperforms the other two ANN models (Back Propagation Networks and Perceptron). Based upon this hybrid AI approach, the integrated futures trading system (IFTS) is established and employed to trade the S&P 500 stock index futures contracts. Empirical results also confirm that IFTS outperformed the passive buy-and-hold investment strategy during the 6-year testing period from 1988 to 1993.
doi_str_mv 10.1016/S0167-9236(98)00028-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27527368</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167923698000281</els_id><sourcerecordid>35018846</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-bffd47f27850929849316b8d9fff7cadb54c986bda43664ba21c28afa18f39ee3</originalsourceid><addsrcrecordid>eNqFkMtKAzEUhoMoWKuPIASRoovRXGZyWZVSrBYKCtV1yGQSm9rO1GRG7ds7vaDgxs05m-__z-ED4ByjG4wwu522gyeSUHYlxTVCiIgEH4AOFpwmGZf8EHR-kGNwEuMcIUa5YB3QH1XBGh1rX77Cae8JZgjBWFfmDfqysF_QNXUTbISfvp5BDWfrPPgCDsYwrmNtl6fgyOlFtGf73QUvo7vn4UMyebwfDweTxFCG6yR3rki5I1xkSBIpUkkxy0UhnXPc6CLPUiMFywudUsbSXBNsiNBOY-GotJZ2QW_XuwrVe2NjrZY-GrtY6NJWTVSEZ4RTJlrw4g84r5pQtr8pglgmJRVpC2U7yIQqxmCdWgW_1GGtMFIbp2rrVG2EKSnU1qnCbe5yX66j0QsXdGl8_A1zklLOW6y_w2xr5MPboKLxtjS28K3sWhWV_-fQN4pniOI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>206599384</pqid></control><display><type>article</type><title>Forecasting S&amp;P 500 stock index futures with a hybrid AI system</title><source>Elsevier ScienceDirect Journals</source><creator>Tsaih, Ray ; Hsu, Yenshan ; Lai, Charles C.</creator><creatorcontrib>Tsaih, Ray ; Hsu, Yenshan ; Lai, Charles C.</creatorcontrib><description>This study presents a hybrid AI (artificial intelligence) approach to the implementation of trading strategies in the S&amp;P 500 stock index futures market. The hybrid AI approach integrates the rule-based systems technique and the neural networks technique to accurately predict the direction of daily price changes in S&amp;P 500 stock index futures. By highlighting the advantages and overcoming the limitations of both the neural networks technique and rule-based systems technique, the hybrid approach can facilitate the development of more reliable intelligent systems to model expert thinking and to support the decision-making processes. Our methodology differs from other studies in two respects. First, the rule-based systems approach is applied to provide neural networks with training examples. Second, we employ Reasoning Neural Networks (RN) instead of Back Propagation Networks. Empirical results demonstrate that RN outperforms the other two ANN models (Back Propagation Networks and Perceptron). Based upon this hybrid AI approach, the integrated futures trading system (IFTS) is established and employed to trade the S&amp;P 500 stock index futures contracts. Empirical results also confirm that IFTS outperformed the passive buy-and-hold investment strategy during the 6-year testing period from 1988 to 1993.</description><identifier>ISSN: 0167-9236</identifier><identifier>EISSN: 1873-5797</identifier><identifier>DOI: 10.1016/S0167-9236(98)00028-1</identifier><identifier>CODEN: DSSYDK</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Artificial intelligence ; Back propagation ; Back Propagation Networks ; Decision support systems ; Exact sciences and technology ; Futures ; Hybrid AI system ; Neural networks ; Operational research and scientific management ; Operational research. Management science ; Portfolio theory ; Reasoning Neural Networks ; Rule-based system ; S&amp;P 500 stock index futures ; Stock index futures ; Studies</subject><ispartof>Decision Support Systems, 1998-06, Vol.23 (2), p.161-174</ispartof><rights>1998 Elsevier Science B.V.</rights><rights>1999 INIST-CNRS</rights><rights>Copyright Elsevier Sequoia S.A. Jun 1998</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-bffd47f27850929849316b8d9fff7cadb54c986bda43664ba21c28afa18f39ee3</citedby><cites>FETCH-LOGICAL-c361t-bffd47f27850929849316b8d9fff7cadb54c986bda43664ba21c28afa18f39ee3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0167923698000281$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1724377$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Tsaih, Ray</creatorcontrib><creatorcontrib>Hsu, Yenshan</creatorcontrib><creatorcontrib>Lai, Charles C.</creatorcontrib><title>Forecasting S&amp;P 500 stock index futures with a hybrid AI system</title><title>Decision Support Systems</title><description>This study presents a hybrid AI (artificial intelligence) approach to the implementation of trading strategies in the S&amp;P 500 stock index futures market. The hybrid AI approach integrates the rule-based systems technique and the neural networks technique to accurately predict the direction of daily price changes in S&amp;P 500 stock index futures. By highlighting the advantages and overcoming the limitations of both the neural networks technique and rule-based systems technique, the hybrid approach can facilitate the development of more reliable intelligent systems to model expert thinking and to support the decision-making processes. Our methodology differs from other studies in two respects. First, the rule-based systems approach is applied to provide neural networks with training examples. Second, we employ Reasoning Neural Networks (RN) instead of Back Propagation Networks. Empirical results demonstrate that RN outperforms the other two ANN models (Back Propagation Networks and Perceptron). Based upon this hybrid AI approach, the integrated futures trading system (IFTS) is established and employed to trade the S&amp;P 500 stock index futures contracts. Empirical results also confirm that IFTS outperformed the passive buy-and-hold investment strategy during the 6-year testing period from 1988 to 1993.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Back propagation</subject><subject>Back Propagation Networks</subject><subject>Decision support systems</subject><subject>Exact sciences and technology</subject><subject>Futures</subject><subject>Hybrid AI system</subject><subject>Neural networks</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Portfolio theory</subject><subject>Reasoning Neural Networks</subject><subject>Rule-based system</subject><subject>S&amp;P 500 stock index futures</subject><subject>Stock index futures</subject><subject>Studies</subject><issn>0167-9236</issn><issn>1873-5797</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNqFkMtKAzEUhoMoWKuPIASRoovRXGZyWZVSrBYKCtV1yGQSm9rO1GRG7ds7vaDgxs05m-__z-ED4ByjG4wwu522gyeSUHYlxTVCiIgEH4AOFpwmGZf8EHR-kGNwEuMcIUa5YB3QH1XBGh1rX77Cae8JZgjBWFfmDfqysF_QNXUTbISfvp5BDWfrPPgCDsYwrmNtl6fgyOlFtGf73QUvo7vn4UMyebwfDweTxFCG6yR3rki5I1xkSBIpUkkxy0UhnXPc6CLPUiMFywudUsbSXBNsiNBOY-GotJZ2QW_XuwrVe2NjrZY-GrtY6NJWTVSEZ4RTJlrw4g84r5pQtr8pglgmJRVpC2U7yIQqxmCdWgW_1GGtMFIbp2rrVG2EKSnU1qnCbe5yX66j0QsXdGl8_A1zklLOW6y_w2xr5MPboKLxtjS28K3sWhWV_-fQN4pniOI</recordid><startdate>19980601</startdate><enddate>19980601</enddate><creator>Tsaih, Ray</creator><creator>Hsu, Yenshan</creator><creator>Lai, Charles C.</creator><general>Elsevier B.V</general><general>Elsevier Science</general><general>Elsevier Sequoia S.A</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19980601</creationdate><title>Forecasting S&amp;P 500 stock index futures with a hybrid AI system</title><author>Tsaih, Ray ; Hsu, Yenshan ; Lai, Charles C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-bffd47f27850929849316b8d9fff7cadb54c986bda43664ba21c28afa18f39ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Back propagation</topic><topic>Back Propagation Networks</topic><topic>Decision support systems</topic><topic>Exact sciences and technology</topic><topic>Futures</topic><topic>Hybrid AI system</topic><topic>Neural networks</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Portfolio theory</topic><topic>Reasoning Neural Networks</topic><topic>Rule-based system</topic><topic>S&amp;P 500 stock index futures</topic><topic>Stock index futures</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tsaih, Ray</creatorcontrib><creatorcontrib>Hsu, Yenshan</creatorcontrib><creatorcontrib>Lai, Charles C.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Decision Support Systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tsaih, Ray</au><au>Hsu, Yenshan</au><au>Lai, Charles C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Forecasting S&amp;P 500 stock index futures with a hybrid AI system</atitle><jtitle>Decision Support Systems</jtitle><date>1998-06-01</date><risdate>1998</risdate><volume>23</volume><issue>2</issue><spage>161</spage><epage>174</epage><pages>161-174</pages><issn>0167-9236</issn><eissn>1873-5797</eissn><coden>DSSYDK</coden><abstract>This study presents a hybrid AI (artificial intelligence) approach to the implementation of trading strategies in the S&amp;P 500 stock index futures market. The hybrid AI approach integrates the rule-based systems technique and the neural networks technique to accurately predict the direction of daily price changes in S&amp;P 500 stock index futures. By highlighting the advantages and overcoming the limitations of both the neural networks technique and rule-based systems technique, the hybrid approach can facilitate the development of more reliable intelligent systems to model expert thinking and to support the decision-making processes. Our methodology differs from other studies in two respects. First, the rule-based systems approach is applied to provide neural networks with training examples. Second, we employ Reasoning Neural Networks (RN) instead of Back Propagation Networks. Empirical results demonstrate that RN outperforms the other two ANN models (Back Propagation Networks and Perceptron). Based upon this hybrid AI approach, the integrated futures trading system (IFTS) is established and employed to trade the S&amp;P 500 stock index futures contracts. Empirical results also confirm that IFTS outperformed the passive buy-and-hold investment strategy during the 6-year testing period from 1988 to 1993.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/S0167-9236(98)00028-1</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0167-9236
ispartof Decision Support Systems, 1998-06, Vol.23 (2), p.161-174
issn 0167-9236
1873-5797
language eng
recordid cdi_proquest_miscellaneous_27527368
source Elsevier ScienceDirect Journals
subjects Applied sciences
Artificial intelligence
Back propagation
Back Propagation Networks
Decision support systems
Exact sciences and technology
Futures
Hybrid AI system
Neural networks
Operational research and scientific management
Operational research. Management science
Portfolio theory
Reasoning Neural Networks
Rule-based system
S&P 500 stock index futures
Stock index futures
Studies
title Forecasting S&P 500 stock index futures with a hybrid AI system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T21%3A44%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Forecasting%20S&P%20500%20stock%20index%20futures%20with%20a%20hybrid%20AI%20system&rft.jtitle=Decision%20Support%20Systems&rft.au=Tsaih,%20Ray&rft.date=1998-06-01&rft.volume=23&rft.issue=2&rft.spage=161&rft.epage=174&rft.pages=161-174&rft.issn=0167-9236&rft.eissn=1873-5797&rft.coden=DSSYDK&rft_id=info:doi/10.1016/S0167-9236(98)00028-1&rft_dat=%3Cproquest_cross%3E35018846%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=206599384&rft_id=info:pmid/&rft_els_id=S0167923698000281&rfr_iscdi=true