Fast Exponentiation Using Data Compression

We present the first exponentiation algorithm that uses the entropy of the source of the exponent to improve on existing exponentiation algorithms when the entropy is smaller than $(1+w(S)/l(S))^{-1}$, where $w(S)$ is the Hamming weight of the exponent, and $l(S)$ is its length. For entropy 1 it is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on computing 1998-01, Vol.28 (2), p.700-703
1. Verfasser: Yacobi, Yacov
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 703
container_issue 2
container_start_page 700
container_title SIAM journal on computing
container_volume 28
creator Yacobi, Yacov
description We present the first exponentiation algorithm that uses the entropy of the source of the exponent to improve on existing exponentiation algorithms when the entropy is smaller than $(1+w(S)/l(S))^{-1}$, where $w(S)$ is the Hamming weight of the exponent, and $l(S)$ is its length. For entropy 1 it is comparable to the best-known general purpose exponentiation algorithms.
doi_str_mv 10.1137/S0097539792234974
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27523501</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>27523501</sourcerecordid><originalsourceid>FETCH-LOGICAL-c253t-929301aabfde133e9030e4fc23bed9512013e66ce65574fdbc3129c39da511233</originalsourceid><addsrcrecordid>eNplkEFLw0AUhBdRsFZ_gLfgwYMQ3bcvm_UdpbYqFDxoz8t28yIpbTbuJqD_3pR60tPAzMcwjBCXIG8B0Ny9SUlGIxlSCgsyxZGYgCSdGwA4FpN9nO_zU3GW0kZKKArAibhZuNRn868utNz2jeub0Gar1LQf2aPrXTYLuy5ySqN9Lk5qt0188atTsVrM32fP-fL16WX2sMy90tjnpAglOLeuKwZEJomSi9orXHNFGpQE5LL0XGptirpaewRFHqlyGkAhTsX1obeL4XPg1Ntdkzxvt67lMCSrjFaox5apuPoDbsIQ23GbJSDQ5b2WIwQHyMeQUuTadrHZufhtQdr9dfbfdfgDXilezg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>919156850</pqid></control><display><type>article</type><title>Fast Exponentiation Using Data Compression</title><source>SIAM Journals Online</source><source>Business Source Complete</source><creator>Yacobi, Yacov</creator><creatorcontrib>Yacobi, Yacov</creatorcontrib><description>We present the first exponentiation algorithm that uses the entropy of the source of the exponent to improve on existing exponentiation algorithms when the entropy is smaller than $(1+w(S)/l(S))^{-1}$, where $w(S)$ is the Hamming weight of the exponent, and $l(S)$ is its length. For entropy 1 it is comparable to the best-known general purpose exponentiation algorithms.</description><identifier>ISSN: 0097-5397</identifier><identifier>EISSN: 1095-7111</identifier><identifier>DOI: 10.1137/S0097539792234974</identifier><language>eng</language><publisher>Philadelphia: Society for Industrial and Applied Mathematics</publisher><subject>Algorithms ; Cryptography ; Data compression ; Entropy</subject><ispartof>SIAM journal on computing, 1998-01, Vol.28 (2), p.700-703</ispartof><rights>[Copyright] © 1998 Society for Industrial and Applied Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c253t-929301aabfde133e9030e4fc23bed9512013e66ce65574fdbc3129c39da511233</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3184,27924,27925</link.rule.ids></links><search><creatorcontrib>Yacobi, Yacov</creatorcontrib><title>Fast Exponentiation Using Data Compression</title><title>SIAM journal on computing</title><description>We present the first exponentiation algorithm that uses the entropy of the source of the exponent to improve on existing exponentiation algorithms when the entropy is smaller than $(1+w(S)/l(S))^{-1}$, where $w(S)$ is the Hamming weight of the exponent, and $l(S)$ is its length. For entropy 1 it is comparable to the best-known general purpose exponentiation algorithms.</description><subject>Algorithms</subject><subject>Cryptography</subject><subject>Data compression</subject><subject>Entropy</subject><issn>0097-5397</issn><issn>1095-7111</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNplkEFLw0AUhBdRsFZ_gLfgwYMQ3bcvm_UdpbYqFDxoz8t28yIpbTbuJqD_3pR60tPAzMcwjBCXIG8B0Ny9SUlGIxlSCgsyxZGYgCSdGwA4FpN9nO_zU3GW0kZKKArAibhZuNRn868utNz2jeub0Gar1LQf2aPrXTYLuy5ySqN9Lk5qt0188atTsVrM32fP-fL16WX2sMy90tjnpAglOLeuKwZEJomSi9orXHNFGpQE5LL0XGptirpaewRFHqlyGkAhTsX1obeL4XPg1Ntdkzxvt67lMCSrjFaox5apuPoDbsIQ23GbJSDQ5b2WIwQHyMeQUuTadrHZufhtQdr9dfbfdfgDXilezg</recordid><startdate>19980101</startdate><enddate>19980101</enddate><creator>Yacobi, Yacov</creator><general>Society for Industrial and Applied Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X2</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88F</scope><scope>88I</scope><scope>88K</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>L.-</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M0K</scope><scope>M0N</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0W</scope><scope>U9A</scope><scope>7SC</scope><scope>8FD</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19980101</creationdate><title>Fast Exponentiation Using Data Compression</title><author>Yacobi, Yacov</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c253t-929301aabfde133e9030e4fc23bed9512013e66ce65574fdbc3129c39da511233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Algorithms</topic><topic>Cryptography</topic><topic>Data compression</topic><topic>Entropy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yacobi, Yacov</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career &amp; Technical Education Database</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Agricultural Science Database</collection><collection>Computing Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>SIAM journal on computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yacobi, Yacov</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast Exponentiation Using Data Compression</atitle><jtitle>SIAM journal on computing</jtitle><date>1998-01-01</date><risdate>1998</risdate><volume>28</volume><issue>2</issue><spage>700</spage><epage>703</epage><pages>700-703</pages><issn>0097-5397</issn><eissn>1095-7111</eissn><abstract>We present the first exponentiation algorithm that uses the entropy of the source of the exponent to improve on existing exponentiation algorithms when the entropy is smaller than $(1+w(S)/l(S))^{-1}$, where $w(S)$ is the Hamming weight of the exponent, and $l(S)$ is its length. For entropy 1 it is comparable to the best-known general purpose exponentiation algorithms.</abstract><cop>Philadelphia</cop><pub>Society for Industrial and Applied Mathematics</pub><doi>10.1137/S0097539792234974</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0097-5397
ispartof SIAM journal on computing, 1998-01, Vol.28 (2), p.700-703
issn 0097-5397
1095-7111
language eng
recordid cdi_proquest_miscellaneous_27523501
source SIAM Journals Online; Business Source Complete
subjects Algorithms
Cryptography
Data compression
Entropy
title Fast Exponentiation Using Data Compression
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T05%3A47%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20Exponentiation%20Using%20Data%20Compression&rft.jtitle=SIAM%20journal%20on%20computing&rft.au=Yacobi,%20Yacov&rft.date=1998-01-01&rft.volume=28&rft.issue=2&rft.spage=700&rft.epage=703&rft.pages=700-703&rft.issn=0097-5397&rft.eissn=1095-7111&rft_id=info:doi/10.1137/S0097539792234974&rft_dat=%3Cproquest_cross%3E27523501%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=919156850&rft_id=info:pmid/&rfr_iscdi=true