Filter bank algorithms for piecewise linear prewavelets on arbitrary triangulations

This paper studies algorithms for decomposition, reconstruction, and approximation based on piecewise linear prewavelets on bounded triangulations of arbitrary topology. Our key mathematical result is showing that the Schur complement of the associated two scale matrix is symmetric, positive definit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational and applied mathematics 2000-07, Vol.119 (1), p.185-207
Hauptverfasser: Floater, Michael S., Quak, Ewald G., Reimers, Martin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 207
container_issue 1
container_start_page 185
container_title Journal of computational and applied mathematics
container_volume 119
creator Floater, Michael S.
Quak, Ewald G.
Reimers, Martin
description This paper studies algorithms for decomposition, reconstruction, and approximation based on piecewise linear prewavelets on bounded triangulations of arbitrary topology. Our key mathematical result is showing that the Schur complement of the associated two scale matrix is symmetric, positive definite, and well conditioned. Numerical examples suggest that thresholding based on prewavelets yields a smaller approximation error than when based on the simple ‘Faber’ decomposition scheme.
doi_str_mv 10.1016/S0377-0427(00)00378-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27519444</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377042700003782</els_id><sourcerecordid>27519444</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-8c74b4b10ada0b56c7e0de60dde8f9c08a0ac4f27fb7748e6476dc8db88a4a733</originalsourceid><addsrcrecordid>eNqFkE9PwzAMxSMEEmPwEZB6QAgOBafNmuyE0MQAaRKHwTlyU3cEsnYk2Sa-Pd0fwZGTZev3_OzH2DmHGw68uJ1CLmUKIpNXANfQdSrNDliPKzlMuZTqkPV-kWN2EsIHABRDLnpsOrYukk9KbD4TdLPW2_g-D0nd-mRhydDaBkqcbQi7gac1rshRDEnbJOhLGz367yR6i81s6TDatgmn7KhGF-hsX_vsbfzwOnpKJy-Pz6P7SWryQsZUGSlKUXLACqEcFEYSVFRAVZGqhwYUAhpRZ7IupRSKCiGLyqiqVAoFyjzvs8vd3oVvv5YUop7bYMg5bKhdBp3JAR8KITpwsAONb0PwVOuFt_PucM1BbyLU2wj1Jh8NoLcR6qzTXewNMBh0tcfG2PAnFhlk-aDD7nYYdc-uLHkdjKXGUGU9mair1v5j9AMEnId8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27519444</pqid></control><display><type>article</type><title>Filter bank algorithms for piecewise linear prewavelets on arbitrary triangulations</title><source>Elsevier ScienceDirect Journals Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Floater, Michael S. ; Quak, Ewald G. ; Reimers, Martin</creator><creatorcontrib>Floater, Michael S. ; Quak, Ewald G. ; Reimers, Martin</creatorcontrib><description>This paper studies algorithms for decomposition, reconstruction, and approximation based on piecewise linear prewavelets on bounded triangulations of arbitrary topology. Our key mathematical result is showing that the Schur complement of the associated two scale matrix is symmetric, positive definite, and well conditioned. Numerical examples suggest that thresholding based on prewavelets yields a smaller approximation error than when based on the simple ‘Faber’ decomposition scheme.</description><identifier>ISSN: 0377-0427</identifier><identifier>EISSN: 1879-1778</identifier><identifier>DOI: 10.1016/S0377-0427(00)00378-2</identifier><identifier>CODEN: JCAMDI</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Approximations and expansions ; Exact sciences and technology ; Filter bank algorithms ; Local support ; Mathematical analysis ; Mathematics ; Numerical analysis ; Numerical analysis. Scientific computation ; Numerical approximation ; Piecewise linear splines ; Prewavelets ; Sciences and techniques of general use ; Thresholding ; Triangulations ; Wavelet spaces</subject><ispartof>Journal of computational and applied mathematics, 2000-07, Vol.119 (1), p.185-207</ispartof><rights>2000 Elsevier Science B.V.</rights><rights>2000 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-8c74b4b10ada0b56c7e0de60dde8f9c08a0ac4f27fb7748e6476dc8db88a4a733</citedby><cites>FETCH-LOGICAL-c367t-8c74b4b10ada0b56c7e0de60dde8f9c08a0ac4f27fb7748e6476dc8db88a4a733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0377-0427(00)00378-2$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1420235$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Floater, Michael S.</creatorcontrib><creatorcontrib>Quak, Ewald G.</creatorcontrib><creatorcontrib>Reimers, Martin</creatorcontrib><title>Filter bank algorithms for piecewise linear prewavelets on arbitrary triangulations</title><title>Journal of computational and applied mathematics</title><description>This paper studies algorithms for decomposition, reconstruction, and approximation based on piecewise linear prewavelets on bounded triangulations of arbitrary topology. Our key mathematical result is showing that the Schur complement of the associated two scale matrix is symmetric, positive definite, and well conditioned. Numerical examples suggest that thresholding based on prewavelets yields a smaller approximation error than when based on the simple ‘Faber’ decomposition scheme.</description><subject>Approximations and expansions</subject><subject>Exact sciences and technology</subject><subject>Filter bank algorithms</subject><subject>Local support</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Numerical approximation</subject><subject>Piecewise linear splines</subject><subject>Prewavelets</subject><subject>Sciences and techniques of general use</subject><subject>Thresholding</subject><subject>Triangulations</subject><subject>Wavelet spaces</subject><issn>0377-0427</issn><issn>1879-1778</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNqFkE9PwzAMxSMEEmPwEZB6QAgOBafNmuyE0MQAaRKHwTlyU3cEsnYk2Sa-Pd0fwZGTZev3_OzH2DmHGw68uJ1CLmUKIpNXANfQdSrNDliPKzlMuZTqkPV-kWN2EsIHABRDLnpsOrYukk9KbD4TdLPW2_g-D0nd-mRhydDaBkqcbQi7gac1rshRDEnbJOhLGz367yR6i81s6TDatgmn7KhGF-hsX_vsbfzwOnpKJy-Pz6P7SWryQsZUGSlKUXLACqEcFEYSVFRAVZGqhwYUAhpRZ7IupRSKCiGLyqiqVAoFyjzvs8vd3oVvv5YUop7bYMg5bKhdBp3JAR8KITpwsAONb0PwVOuFt_PucM1BbyLU2wj1Jh8NoLcR6qzTXewNMBh0tcfG2PAnFhlk-aDD7nYYdc-uLHkdjKXGUGU9mair1v5j9AMEnId8</recordid><startdate>20000701</startdate><enddate>20000701</enddate><creator>Floater, Michael S.</creator><creator>Quak, Ewald G.</creator><creator>Reimers, Martin</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20000701</creationdate><title>Filter bank algorithms for piecewise linear prewavelets on arbitrary triangulations</title><author>Floater, Michael S. ; Quak, Ewald G. ; Reimers, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-8c74b4b10ada0b56c7e0de60dde8f9c08a0ac4f27fb7748e6476dc8db88a4a733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Approximations and expansions</topic><topic>Exact sciences and technology</topic><topic>Filter bank algorithms</topic><topic>Local support</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Numerical approximation</topic><topic>Piecewise linear splines</topic><topic>Prewavelets</topic><topic>Sciences and techniques of general use</topic><topic>Thresholding</topic><topic>Triangulations</topic><topic>Wavelet spaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Floater, Michael S.</creatorcontrib><creatorcontrib>Quak, Ewald G.</creatorcontrib><creatorcontrib>Reimers, Martin</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Floater, Michael S.</au><au>Quak, Ewald G.</au><au>Reimers, Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Filter bank algorithms for piecewise linear prewavelets on arbitrary triangulations</atitle><jtitle>Journal of computational and applied mathematics</jtitle><date>2000-07-01</date><risdate>2000</risdate><volume>119</volume><issue>1</issue><spage>185</spage><epage>207</epage><pages>185-207</pages><issn>0377-0427</issn><eissn>1879-1778</eissn><coden>JCAMDI</coden><abstract>This paper studies algorithms for decomposition, reconstruction, and approximation based on piecewise linear prewavelets on bounded triangulations of arbitrary topology. Our key mathematical result is showing that the Schur complement of the associated two scale matrix is symmetric, positive definite, and well conditioned. Numerical examples suggest that thresholding based on prewavelets yields a smaller approximation error than when based on the simple ‘Faber’ decomposition scheme.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/S0377-0427(00)00378-2</doi><tpages>23</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0377-0427
ispartof Journal of computational and applied mathematics, 2000-07, Vol.119 (1), p.185-207
issn 0377-0427
1879-1778
language eng
recordid cdi_proquest_miscellaneous_27519444
source Elsevier ScienceDirect Journals Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Approximations and expansions
Exact sciences and technology
Filter bank algorithms
Local support
Mathematical analysis
Mathematics
Numerical analysis
Numerical analysis. Scientific computation
Numerical approximation
Piecewise linear splines
Prewavelets
Sciences and techniques of general use
Thresholding
Triangulations
Wavelet spaces
title Filter bank algorithms for piecewise linear prewavelets on arbitrary triangulations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T21%3A03%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Filter%20bank%20algorithms%20for%20piecewise%20linear%20prewavelets%20on%20arbitrary%20triangulations&rft.jtitle=Journal%20of%20computational%20and%20applied%20mathematics&rft.au=Floater,%20Michael%20S.&rft.date=2000-07-01&rft.volume=119&rft.issue=1&rft.spage=185&rft.epage=207&rft.pages=185-207&rft.issn=0377-0427&rft.eissn=1879-1778&rft.coden=JCAMDI&rft_id=info:doi/10.1016/S0377-0427(00)00378-2&rft_dat=%3Cproquest_cross%3E27519444%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27519444&rft_id=info:pmid/&rft_els_id=S0377042700003782&rfr_iscdi=true