An efficient approach for the numerical simulation of multibody systems

The field of kinematics and dynamics of mechanical systems has progressed from a manual graphics art to a highly developed discipline in analytical geometry and dynamics. Various general purpose formulations for the dynamic analysis of Constrained Mechanical Systems (CMS) lead to mixed Differential-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematics and computation 1998-06, Vol.92 (2), p.195-218, Article 195
Hauptverfasser: Sudarsan, R., Sathiya Keerthi, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 218
container_issue 2
container_start_page 195
container_title Applied mathematics and computation
container_volume 92
creator Sudarsan, R.
Sathiya Keerthi, S.
description The field of kinematics and dynamics of mechanical systems has progressed from a manual graphics art to a highly developed discipline in analytical geometry and dynamics. Various general purpose formulations for the dynamic analysis of Constrained Mechanical Systems (CMS) lead to mixed Differential-Algebraic Equations (DAEs) called the Euler-Lagrange equations. During the past fifteen years many contributions have been made to the theory of computational kinematics and dynamics of CMS (also called Mutibody dynamics). The recent advances in computer hardware and software have tremendously revolutionized the analysis of CMS. There are various numerical approaches for solving general vector fields. In the previous paper [Appl. Math. Comput. 92 (1998) 153–193] a complete and detailed analysis of various approaches for the numerical solution of vector fields is given. In this paper we extend the algorithms presented in the above mentioned reference to solve the Euler-Lagrange equations of motion for CMS. The numerical experiments suggest that perturbation approach performs ‘better’ than the other approaches.
doi_str_mv 10.1016/S0096-3003(97)10041-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27518636</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0096300397100418</els_id><sourcerecordid>27518636</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-be261021bc62042d329f1e577188ecea424e478e15dd185be09fdbeb1f22e60f3</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWKs_QchJ9LCaj91sFg9Silah4EE9h2x2QiO7m5pkhf57t6148NLTzOF9XmYehC4puaWEirs3QiqRcUL4dVXeUEJymskjNKGy5Fkh8uoYTf4ip-gsxk9CSCloPkGLWY_BWmcc9Anr9Tp4bVbY-oDTCnA_dBCc0S2OrhtanZzvsbd43JOrfbPBcRMTdPEcnVjdRrj4nVP08fT4Pn_Olq-Ll_lsmRnOZcpqYIISRmsjGMlZw1llKRRlSaUEAzpnOeSlBFo0DZVFDaSyTQ01tYyBIJZP0dW-dzz0a4CYVOeigbbVPfghKlYWVAouxmCxD5rgYwxg1Tq4ToeNokRttamdNrV1oqpS7bQpOXL3_zjj0u7vFLRrD9IPexpGB98OgopbswYaF8Ak1Xh3oOEHpouHng</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27518636</pqid></control><display><type>article</type><title>An efficient approach for the numerical simulation of multibody systems</title><source>Access via ScienceDirect (Elsevier)</source><creator>Sudarsan, R. ; Sathiya Keerthi, S.</creator><creatorcontrib>Sudarsan, R. ; Sathiya Keerthi, S.</creatorcontrib><description>The field of kinematics and dynamics of mechanical systems has progressed from a manual graphics art to a highly developed discipline in analytical geometry and dynamics. Various general purpose formulations for the dynamic analysis of Constrained Mechanical Systems (CMS) lead to mixed Differential-Algebraic Equations (DAEs) called the Euler-Lagrange equations. During the past fifteen years many contributions have been made to the theory of computational kinematics and dynamics of CMS (also called Mutibody dynamics). The recent advances in computer hardware and software have tremendously revolutionized the analysis of CMS. There are various numerical approaches for solving general vector fields. In the previous paper [Appl. Math. Comput. 92 (1998) 153–193] a complete and detailed analysis of various approaches for the numerical solution of vector fields is given. In this paper we extend the algorithms presented in the above mentioned reference to solve the Euler-Lagrange equations of motion for CMS. The numerical experiments suggest that perturbation approach performs ‘better’ than the other approaches.</description><identifier>ISSN: 0096-3003</identifier><identifier>EISSN: 1873-5649</identifier><identifier>DOI: 10.1016/S0096-3003(97)10041-8</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Constraint stabilization ; Differential-algebraic equations ; Euler-Lagrange equations ; Local parameterization ; Manifolds ; Multibody systems ; Numerical ODEs ; Vector fields</subject><ispartof>Applied mathematics and computation, 1998-06, Vol.92 (2), p.195-218, Article 195</ispartof><rights>1998</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-be261021bc62042d329f1e577188ecea424e478e15dd185be09fdbeb1f22e60f3</citedby><cites>FETCH-LOGICAL-c338t-be261021bc62042d329f1e577188ecea424e478e15dd185be09fdbeb1f22e60f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0096-3003(97)10041-8$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Sudarsan, R.</creatorcontrib><creatorcontrib>Sathiya Keerthi, S.</creatorcontrib><title>An efficient approach for the numerical simulation of multibody systems</title><title>Applied mathematics and computation</title><description>The field of kinematics and dynamics of mechanical systems has progressed from a manual graphics art to a highly developed discipline in analytical geometry and dynamics. Various general purpose formulations for the dynamic analysis of Constrained Mechanical Systems (CMS) lead to mixed Differential-Algebraic Equations (DAEs) called the Euler-Lagrange equations. During the past fifteen years many contributions have been made to the theory of computational kinematics and dynamics of CMS (also called Mutibody dynamics). The recent advances in computer hardware and software have tremendously revolutionized the analysis of CMS. There are various numerical approaches for solving general vector fields. In the previous paper [Appl. Math. Comput. 92 (1998) 153–193] a complete and detailed analysis of various approaches for the numerical solution of vector fields is given. In this paper we extend the algorithms presented in the above mentioned reference to solve the Euler-Lagrange equations of motion for CMS. The numerical experiments suggest that perturbation approach performs ‘better’ than the other approaches.</description><subject>Constraint stabilization</subject><subject>Differential-algebraic equations</subject><subject>Euler-Lagrange equations</subject><subject>Local parameterization</subject><subject>Manifolds</subject><subject>Multibody systems</subject><subject>Numerical ODEs</subject><subject>Vector fields</subject><issn>0096-3003</issn><issn>1873-5649</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWKs_QchJ9LCaj91sFg9Silah4EE9h2x2QiO7m5pkhf57t6148NLTzOF9XmYehC4puaWEirs3QiqRcUL4dVXeUEJymskjNKGy5Fkh8uoYTf4ip-gsxk9CSCloPkGLWY_BWmcc9Anr9Tp4bVbY-oDTCnA_dBCc0S2OrhtanZzvsbd43JOrfbPBcRMTdPEcnVjdRrj4nVP08fT4Pn_Olq-Ll_lsmRnOZcpqYIISRmsjGMlZw1llKRRlSaUEAzpnOeSlBFo0DZVFDaSyTQ01tYyBIJZP0dW-dzz0a4CYVOeigbbVPfghKlYWVAouxmCxD5rgYwxg1Tq4ToeNokRttamdNrV1oqpS7bQpOXL3_zjj0u7vFLRrD9IPexpGB98OgopbswYaF8Ak1Xh3oOEHpouHng</recordid><startdate>19980615</startdate><enddate>19980615</enddate><creator>Sudarsan, R.</creator><creator>Sathiya Keerthi, S.</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19980615</creationdate><title>An efficient approach for the numerical simulation of multibody systems</title><author>Sudarsan, R. ; Sathiya Keerthi, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-be261021bc62042d329f1e577188ecea424e478e15dd185be09fdbeb1f22e60f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Constraint stabilization</topic><topic>Differential-algebraic equations</topic><topic>Euler-Lagrange equations</topic><topic>Local parameterization</topic><topic>Manifolds</topic><topic>Multibody systems</topic><topic>Numerical ODEs</topic><topic>Vector fields</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sudarsan, R.</creatorcontrib><creatorcontrib>Sathiya Keerthi, S.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied mathematics and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sudarsan, R.</au><au>Sathiya Keerthi, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An efficient approach for the numerical simulation of multibody systems</atitle><jtitle>Applied mathematics and computation</jtitle><date>1998-06-15</date><risdate>1998</risdate><volume>92</volume><issue>2</issue><spage>195</spage><epage>218</epage><pages>195-218</pages><artnum>195</artnum><issn>0096-3003</issn><eissn>1873-5649</eissn><abstract>The field of kinematics and dynamics of mechanical systems has progressed from a manual graphics art to a highly developed discipline in analytical geometry and dynamics. Various general purpose formulations for the dynamic analysis of Constrained Mechanical Systems (CMS) lead to mixed Differential-Algebraic Equations (DAEs) called the Euler-Lagrange equations. During the past fifteen years many contributions have been made to the theory of computational kinematics and dynamics of CMS (also called Mutibody dynamics). The recent advances in computer hardware and software have tremendously revolutionized the analysis of CMS. There are various numerical approaches for solving general vector fields. In the previous paper [Appl. Math. Comput. 92 (1998) 153–193] a complete and detailed analysis of various approaches for the numerical solution of vector fields is given. In this paper we extend the algorithms presented in the above mentioned reference to solve the Euler-Lagrange equations of motion for CMS. The numerical experiments suggest that perturbation approach performs ‘better’ than the other approaches.</abstract><pub>Elsevier Inc</pub><doi>10.1016/S0096-3003(97)10041-8</doi><tpages>24</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0096-3003
ispartof Applied mathematics and computation, 1998-06, Vol.92 (2), p.195-218, Article 195
issn 0096-3003
1873-5649
language eng
recordid cdi_proquest_miscellaneous_27518636
source Access via ScienceDirect (Elsevier)
subjects Constraint stabilization
Differential-algebraic equations
Euler-Lagrange equations
Local parameterization
Manifolds
Multibody systems
Numerical ODEs
Vector fields
title An efficient approach for the numerical simulation of multibody systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T11%3A28%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20efficient%20approach%20for%20the%20numerical%20simulation%20of%20multibody%20systems&rft.jtitle=Applied%20mathematics%20and%20computation&rft.au=Sudarsan,%20R.&rft.date=1998-06-15&rft.volume=92&rft.issue=2&rft.spage=195&rft.epage=218&rft.pages=195-218&rft.artnum=195&rft.issn=0096-3003&rft.eissn=1873-5649&rft_id=info:doi/10.1016/S0096-3003(97)10041-8&rft_dat=%3Cproquest_cross%3E27518636%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27518636&rft_id=info:pmid/&rft_els_id=S0096300397100418&rfr_iscdi=true