Effect of atmospheric turbulence on propagation of ultraviolet radiation
We investigate the effect of atmospheric optical turbulence on ultraviolet (UV) radiation with a wavelength of 253.7 nm. The normalized irradiance variance (scintillation index) was measured using a UV scintillometer with a path length of 185 m. The dependence of the UV scintillations on the atmosph...
Gespeichert in:
Veröffentlicht in: | Optics and laser technology 2000-02, Vol.32 (1), p.39-48 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 48 |
---|---|
container_issue | 1 |
container_start_page | 39 |
container_title | Optics and laser technology |
container_volume | 32 |
creator | Hutt, Daniel L. Tofsted, David H. |
description | We investigate the effect of atmospheric optical turbulence on ultraviolet (UV) radiation with a wavelength of 253.7 nm. The normalized irradiance variance (scintillation index) was measured using a UV scintillometer with a path length of 185 m. The dependence of the UV scintillations on the atmospheric turbulence structure parameter and inner scale was determined through simultaneous measurements of these quantities made with a visible laser scintillometer. The dependence of the UV scintillation index and its probability density function on receiver aperture size was also measured. It was found that the scintillation predicted by currently available models which take into account the effects of inner scale, saturation and aperture averaging was in good agreement with the measurements made under various conditions in weak turbulence. |
doi_str_mv | 10.1016/S0030-3992(00)00014-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27514453</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0030399200000141</els_id><sourcerecordid>27514453</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-2136cb5d2162c640f1dc42a243fb4ea1c0c650d0b1c563beff27e0f0d68e97f23</originalsourceid><addsrcrecordid>eNqFkEtLAzEQgIMoWKs_QdiDiB5WJ8_tnkRKtULBg3oO2Wyike2mJtmC_970gR49zcB88_oQOsdwgwGL2xcACiWta3IFcA0AmJX4AI3wpKpLwhk_RKNf5BidxPiZISY4HaH5zFqjU-FtodLSx9WHCU4XaQjN0Jlem8L3xSr4lXpXyeU8g0OXglo735lUBNW6beEUHVnVRXO2j2P09jB7nc7LxfPj0_R-UWoqqlQSTIVueEuwIFowsLjVjCjCqG2YUViDFhxaaLDmgjbGWlIZsNCKiakrS-gYXe7m5qO-BhOTXLqoTdep3vghSlJxzBinGeQ7UAcfYzBWroJbqvAtMciNN7n1JjdSJIDcepM4913sF6ioVWeD6rWLf82M11BBxu52mMnPrp0JMmq3Eda6kIXK1rt_Fv0A46mCEQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27514453</pqid></control><display><type>article</type><title>Effect of atmospheric turbulence on propagation of ultraviolet radiation</title><source>Access via ScienceDirect (Elsevier)</source><creator>Hutt, Daniel L. ; Tofsted, David H.</creator><creatorcontrib>Hutt, Daniel L. ; Tofsted, David H.</creatorcontrib><description>We investigate the effect of atmospheric optical turbulence on ultraviolet (UV) radiation with a wavelength of 253.7 nm. The normalized irradiance variance (scintillation index) was measured using a UV scintillometer with a path length of 185 m. The dependence of the UV scintillations on the atmospheric turbulence structure parameter and inner scale was determined through simultaneous measurements of these quantities made with a visible laser scintillometer. The dependence of the UV scintillation index and its probability density function on receiver aperture size was also measured. It was found that the scintillation predicted by currently available models which take into account the effects of inner scale, saturation and aperture averaging was in good agreement with the measurements made under various conditions in weak turbulence.</description><identifier>ISSN: 0030-3992</identifier><identifier>EISSN: 1879-2545</identifier><identifier>DOI: 10.1016/S0030-3992(00)00014-1</identifier><identifier>CODEN: OLTCAS</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Atmospheric turbulence effects ; Convection, turbulence, diffusion. Boundary layer structure and dynamics ; Earth, ocean, space ; Exact sciences and technology ; External geophysics ; Inner scale ; Meteorology ; Optical turbulence ; Scintillation ; Ultraviolet radiation</subject><ispartof>Optics and laser technology, 2000-02, Vol.32 (1), p.39-48</ispartof><rights>2000</rights><rights>2000 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-2136cb5d2162c640f1dc42a243fb4ea1c0c650d0b1c563beff27e0f0d68e97f23</citedby><cites>FETCH-LOGICAL-c367t-2136cb5d2162c640f1dc42a243fb4ea1c0c650d0b1c563beff27e0f0d68e97f23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0030-3992(00)00014-1$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1459070$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hutt, Daniel L.</creatorcontrib><creatorcontrib>Tofsted, David H.</creatorcontrib><title>Effect of atmospheric turbulence on propagation of ultraviolet radiation</title><title>Optics and laser technology</title><description>We investigate the effect of atmospheric optical turbulence on ultraviolet (UV) radiation with a wavelength of 253.7 nm. The normalized irradiance variance (scintillation index) was measured using a UV scintillometer with a path length of 185 m. The dependence of the UV scintillations on the atmospheric turbulence structure parameter and inner scale was determined through simultaneous measurements of these quantities made with a visible laser scintillometer. The dependence of the UV scintillation index and its probability density function on receiver aperture size was also measured. It was found that the scintillation predicted by currently available models which take into account the effects of inner scale, saturation and aperture averaging was in good agreement with the measurements made under various conditions in weak turbulence.</description><subject>Atmospheric turbulence effects</subject><subject>Convection, turbulence, diffusion. Boundary layer structure and dynamics</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Inner scale</subject><subject>Meteorology</subject><subject>Optical turbulence</subject><subject>Scintillation</subject><subject>Ultraviolet radiation</subject><issn>0030-3992</issn><issn>1879-2545</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLAzEQgIMoWKs_QdiDiB5WJ8_tnkRKtULBg3oO2Wyike2mJtmC_970gR49zcB88_oQOsdwgwGL2xcACiWta3IFcA0AmJX4AI3wpKpLwhk_RKNf5BidxPiZISY4HaH5zFqjU-FtodLSx9WHCU4XaQjN0Jlem8L3xSr4lXpXyeU8g0OXglo735lUBNW6beEUHVnVRXO2j2P09jB7nc7LxfPj0_R-UWoqqlQSTIVueEuwIFowsLjVjCjCqG2YUViDFhxaaLDmgjbGWlIZsNCKiakrS-gYXe7m5qO-BhOTXLqoTdep3vghSlJxzBinGeQ7UAcfYzBWroJbqvAtMciNN7n1JjdSJIDcepM4913sF6ioVWeD6rWLf82M11BBxu52mMnPrp0JMmq3Eda6kIXK1rt_Fv0A46mCEQ</recordid><startdate>20000201</startdate><enddate>20000201</enddate><creator>Hutt, Daniel L.</creator><creator>Tofsted, David H.</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20000201</creationdate><title>Effect of atmospheric turbulence on propagation of ultraviolet radiation</title><author>Hutt, Daniel L. ; Tofsted, David H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-2136cb5d2162c640f1dc42a243fb4ea1c0c650d0b1c563beff27e0f0d68e97f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Atmospheric turbulence effects</topic><topic>Convection, turbulence, diffusion. Boundary layer structure and dynamics</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Inner scale</topic><topic>Meteorology</topic><topic>Optical turbulence</topic><topic>Scintillation</topic><topic>Ultraviolet radiation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hutt, Daniel L.</creatorcontrib><creatorcontrib>Tofsted, David H.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>Optics and laser technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hutt, Daniel L.</au><au>Tofsted, David H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of atmospheric turbulence on propagation of ultraviolet radiation</atitle><jtitle>Optics and laser technology</jtitle><date>2000-02-01</date><risdate>2000</risdate><volume>32</volume><issue>1</issue><spage>39</spage><epage>48</epage><pages>39-48</pages><issn>0030-3992</issn><eissn>1879-2545</eissn><coden>OLTCAS</coden><abstract>We investigate the effect of atmospheric optical turbulence on ultraviolet (UV) radiation with a wavelength of 253.7 nm. The normalized irradiance variance (scintillation index) was measured using a UV scintillometer with a path length of 185 m. The dependence of the UV scintillations on the atmospheric turbulence structure parameter and inner scale was determined through simultaneous measurements of these quantities made with a visible laser scintillometer. The dependence of the UV scintillation index and its probability density function on receiver aperture size was also measured. It was found that the scintillation predicted by currently available models which take into account the effects of inner scale, saturation and aperture averaging was in good agreement with the measurements made under various conditions in weak turbulence.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/S0030-3992(00)00014-1</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0030-3992 |
ispartof | Optics and laser technology, 2000-02, Vol.32 (1), p.39-48 |
issn | 0030-3992 1879-2545 |
language | eng |
recordid | cdi_proquest_miscellaneous_27514453 |
source | Access via ScienceDirect (Elsevier) |
subjects | Atmospheric turbulence effects Convection, turbulence, diffusion. Boundary layer structure and dynamics Earth, ocean, space Exact sciences and technology External geophysics Inner scale Meteorology Optical turbulence Scintillation Ultraviolet radiation |
title | Effect of atmospheric turbulence on propagation of ultraviolet radiation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T04%3A28%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20atmospheric%20turbulence%20on%20propagation%20of%20ultraviolet%20radiation&rft.jtitle=Optics%20and%20laser%20technology&rft.au=Hutt,%20Daniel%20L.&rft.date=2000-02-01&rft.volume=32&rft.issue=1&rft.spage=39&rft.epage=48&rft.pages=39-48&rft.issn=0030-3992&rft.eissn=1879-2545&rft.coden=OLTCAS&rft_id=info:doi/10.1016/S0030-3992(00)00014-1&rft_dat=%3Cproquest_cross%3E27514453%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27514453&rft_id=info:pmid/&rft_els_id=S0030399200000141&rfr_iscdi=true |