Effect of material processing on fatigue of FPC rolled copper foil
The effects of rolling strain during final cold reduction and of post-anneal grain size prior to final reduction on fatigue behavior of the rolled copper foil after recrystallization anneal were examined. The fatigue property was characterized by the bending/unbending fatigue tests. Low rolling stra...
Gespeichert in:
Veröffentlicht in: | Journal of electronic materials 2000-05, Vol.29 (5), p.611-616 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 616 |
---|---|
container_issue | 5 |
container_start_page | 611 |
container_title | Journal of electronic materials |
container_volume | 29 |
creator | HATANO, T KUROSAWA, Y MIYAKE, J |
description | The effects of rolling strain during final cold reduction and of post-anneal grain size prior to final reduction on fatigue behavior of the rolled copper foil after recrystallization anneal were examined. The fatigue property was characterized by the bending/unbending fatigue tests. Low rolling strain and large grain size prior to final rolling improved the low-cycle fatigue life due to increase in the ductility of material. High rolling strain and small grain size prior to final rolling improved the high-cycle fatigue presumably due to highly enhanced cube texture. |
doi_str_mv | 10.1007/s11664-000-0054-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27508146</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>27497818</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-ca29a79ba05f7b98cf71e2bffe38c267dbe4a2d75b38ae4a1286a23b19a9c6a73</originalsourceid><addsrcrecordid>eNqNkE1LAzEQhoMoWD9-gLdFxNtqJh-b7FFLq0JBDwrewmyalC3bTU12D_bXu2ULgicPw8zhed-ZeQm5AnoHlKr7BFAUIqeUDiVFvjsiE5CC56CLz2MyobyAXDIuT8lZSmtKQYKGCXmcee9slwWfbbBzscYm28ZgXUp1u8pCm3ns6lXv9sT8bZrF0DRumdmw3bqY-VA3F-TEY5Pc5aGfk4_57H36nC9en16mD4vcCqa63CIrUZUVUulVVWrrFThWDeu5tqxQy8oJZEslK65xGIHpAhmvoMTSFqj4ObkdfYf7vnqXOrOpk3VNg60LfTJMSapBFP8ARak06AG8_gOuQx_b4QnDqNClHN1ghGwMKUXnzTbWG4zfBqjZZ2_G7M2Qvdlnb3aD5uZgjMli4yO2tk6_QiEYg5L_AGFQgyU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204895146</pqid></control><display><type>article</type><title>Effect of material processing on fatigue of FPC rolled copper foil</title><source>SpringerNature Journals</source><creator>HATANO, T ; KUROSAWA, Y ; MIYAKE, J</creator><creatorcontrib>HATANO, T ; KUROSAWA, Y ; MIYAKE, J</creatorcontrib><description>The effects of rolling strain during final cold reduction and of post-anneal grain size prior to final reduction on fatigue behavior of the rolled copper foil after recrystallization anneal were examined. The fatigue property was characterized by the bending/unbending fatigue tests. Low rolling strain and large grain size prior to final rolling improved the low-cycle fatigue life due to increase in the ductility of material. High rolling strain and small grain size prior to final rolling improved the high-cycle fatigue presumably due to highly enhanced cube texture.</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-000-0054-z</identifier><identifier>CODEN: JECMA5</identifier><language>eng</language><publisher>New York, NY: Institute of Electrical and Electronics Engineers</publisher><subject>Applied sciences ; Exact sciences and technology ; Fatigue ; Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology ; Metals. Metallurgy</subject><ispartof>Journal of electronic materials, 2000-05, Vol.29 (5), p.611-616</ispartof><rights>2000 INIST-CNRS</rights><rights>Copyright Minerals, Metals & Materials Society May 2000</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-ca29a79ba05f7b98cf71e2bffe38c267dbe4a2d75b38ae4a1286a23b19a9c6a73</citedby><cites>FETCH-LOGICAL-c427t-ca29a79ba05f7b98cf71e2bffe38c267dbe4a2d75b38ae4a1286a23b19a9c6a73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1442219$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>HATANO, T</creatorcontrib><creatorcontrib>KUROSAWA, Y</creatorcontrib><creatorcontrib>MIYAKE, J</creatorcontrib><title>Effect of material processing on fatigue of FPC rolled copper foil</title><title>Journal of electronic materials</title><description>The effects of rolling strain during final cold reduction and of post-anneal grain size prior to final reduction on fatigue behavior of the rolled copper foil after recrystallization anneal were examined. The fatigue property was characterized by the bending/unbending fatigue tests. Low rolling strain and large grain size prior to final rolling improved the low-cycle fatigue life due to increase in the ductility of material. High rolling strain and small grain size prior to final rolling improved the high-cycle fatigue presumably due to highly enhanced cube texture.</description><subject>Applied sciences</subject><subject>Exact sciences and technology</subject><subject>Fatigue</subject><subject>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</subject><subject>Metals. Metallurgy</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkE1LAzEQhoMoWD9-gLdFxNtqJh-b7FFLq0JBDwrewmyalC3bTU12D_bXu2ULgicPw8zhed-ZeQm5AnoHlKr7BFAUIqeUDiVFvjsiE5CC56CLz2MyobyAXDIuT8lZSmtKQYKGCXmcee9slwWfbbBzscYm28ZgXUp1u8pCm3ns6lXv9sT8bZrF0DRumdmw3bqY-VA3F-TEY5Pc5aGfk4_57H36nC9en16mD4vcCqa63CIrUZUVUulVVWrrFThWDeu5tqxQy8oJZEslK65xGIHpAhmvoMTSFqj4ObkdfYf7vnqXOrOpk3VNg60LfTJMSapBFP8ARak06AG8_gOuQx_b4QnDqNClHN1ghGwMKUXnzTbWG4zfBqjZZ2_G7M2Qvdlnb3aD5uZgjMli4yO2tk6_QiEYg5L_AGFQgyU</recordid><startdate>20000501</startdate><enddate>20000501</enddate><creator>HATANO, T</creator><creator>KUROSAWA, Y</creator><creator>MIYAKE, J</creator><general>Institute of Electrical and Electronics Engineers</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8G</scope><scope>JG9</scope><scope>7SP</scope><scope>L7M</scope></search><sort><creationdate>20000501</creationdate><title>Effect of material processing on fatigue of FPC rolled copper foil</title><author>HATANO, T ; KUROSAWA, Y ; MIYAKE, J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-ca29a79ba05f7b98cf71e2bffe38c267dbe4a2d75b38ae4a1286a23b19a9c6a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Applied sciences</topic><topic>Exact sciences and technology</topic><topic>Fatigue</topic><topic>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</topic><topic>Metals. Metallurgy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>HATANO, T</creatorcontrib><creatorcontrib>KUROSAWA, Y</creatorcontrib><creatorcontrib>MIYAKE, J</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>Electronics & Communications Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>HATANO, T</au><au>KUROSAWA, Y</au><au>MIYAKE, J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of material processing on fatigue of FPC rolled copper foil</atitle><jtitle>Journal of electronic materials</jtitle><date>2000-05-01</date><risdate>2000</risdate><volume>29</volume><issue>5</issue><spage>611</spage><epage>616</epage><pages>611-616</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><coden>JECMA5</coden><abstract>The effects of rolling strain during final cold reduction and of post-anneal grain size prior to final reduction on fatigue behavior of the rolled copper foil after recrystallization anneal were examined. The fatigue property was characterized by the bending/unbending fatigue tests. Low rolling strain and large grain size prior to final rolling improved the low-cycle fatigue life due to increase in the ductility of material. High rolling strain and small grain size prior to final rolling improved the high-cycle fatigue presumably due to highly enhanced cube texture.</abstract><cop>New York, NY</cop><pub>Institute of Electrical and Electronics Engineers</pub><doi>10.1007/s11664-000-0054-z</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0361-5235 |
ispartof | Journal of electronic materials, 2000-05, Vol.29 (5), p.611-616 |
issn | 0361-5235 1543-186X |
language | eng |
recordid | cdi_proquest_miscellaneous_27508146 |
source | SpringerNature Journals |
subjects | Applied sciences Exact sciences and technology Fatigue Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology Metals. Metallurgy |
title | Effect of material processing on fatigue of FPC rolled copper foil |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T12%3A10%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20material%20processing%20on%20fatigue%20of%20FPC%20rolled%20copper%20foil&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=HATANO,%20T&rft.date=2000-05-01&rft.volume=29&rft.issue=5&rft.spage=611&rft.epage=616&rft.pages=611-616&rft.issn=0361-5235&rft.eissn=1543-186X&rft.coden=JECMA5&rft_id=info:doi/10.1007/s11664-000-0054-z&rft_dat=%3Cproquest_cross%3E27497818%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=204895146&rft_id=info:pmid/&rfr_iscdi=true |