Efficient Multiresolution Counterparts to Variational Methods for Surface Reconstruction

Variational methods have been employed with considerable success in computer vision, particularly for surface reconstruction problems. Formulations of this type require the solution of computationally complex Euler–Lagrange partial differential equations (PDEs) to obtain the desired reconstructions....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer vision and image understanding 1998-05, Vol.70 (2), p.157-176
Hauptverfasser: Fieguth, Paul W., Karl, William C., Willsky, Alan S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 176
container_issue 2
container_start_page 157
container_title Computer vision and image understanding
container_volume 70
creator Fieguth, Paul W.
Karl, William C.
Willsky, Alan S.
description Variational methods have been employed with considerable success in computer vision, particularly for surface reconstruction problems. Formulations of this type require the solution of computationally complex Euler–Lagrange partial differential equations (PDEs) to obtain the desired reconstructions. Further, the calculation of reconstruction error covariances for such approaches are usually neglected. In this paper we describe a computationally efficient multiscale approach to surface reconstruction which differs fundamentally from other multiresolution methods that are used to solve the Euler–Lagrange PDEs. Instead, we interpret the variational problem as a statistical estimation problem in order to define a nearby, but slightlydifferent, multiscale estimation problem that admits efficient solutions for both surface reconstructionandthe calculation of error statistics. In particular, the membrane and thin-plate variational models for surfaces are interpreted as 1/f2prior statistical models for the surface and its gradients, respectively. Such 1/f2behavior is then achieved using a recently introduced class of multiresolution models that admits algorithms with constant per-pixel computational complexity.
doi_str_mv 10.1006/cviu.1997.0630
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27507750</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1077314297906305</els_id><sourcerecordid>27507750</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-78732ddbef8f261b9160281eacbf3691167a46b93a209a9316e6ee9f34cbdbcf3</originalsourceid><addsrcrecordid>eNp1kElLAzEUgIMoWKtXz3MQbzNmaTOToxQ3aBHc6C1kMi8YmU5qloL_3gkt3jy9B-9724fQJcEVwZjf6J1NFRGirjBn-AhNCBa4pGy-Ps55XZeMzOgpOgvhC2NCZoJM0PrOGKstDLFYpT5aD8H1KVo3FAuXhgh-q3wMRXTFh_JW5YrqixXET9eFwjhfvCZvlIbiBbQbQvRJZ-gcnRjVB7g4xCl6v797WzyWy-eHp8XtstSs4bGsm5rRrmvBNIZy0grCMW0IKN0axgUhvFYz3gqmKBZKMMKBAwjDZrrtWm3YFF3v5269-04QotzYoKHv1QAuBUnr-fj6HI9gtQe1dyF4MHLr7Ub5H0mwzAJlFiizQJkFjg1Xh8kqaNUbrwZtw18XpYyM54xYs8dg_HJnwcuQfWroRpk6ys7Z_zb8AvXShn0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27507750</pqid></control><display><type>article</type><title>Efficient Multiresolution Counterparts to Variational Methods for Surface Reconstruction</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Fieguth, Paul W. ; Karl, William C. ; Willsky, Alan S.</creator><creatorcontrib>Fieguth, Paul W. ; Karl, William C. ; Willsky, Alan S.</creatorcontrib><description>Variational methods have been employed with considerable success in computer vision, particularly for surface reconstruction problems. Formulations of this type require the solution of computationally complex Euler–Lagrange partial differential equations (PDEs) to obtain the desired reconstructions. Further, the calculation of reconstruction error covariances for such approaches are usually neglected. In this paper we describe a computationally efficient multiscale approach to surface reconstruction which differs fundamentally from other multiresolution methods that are used to solve the Euler–Lagrange PDEs. Instead, we interpret the variational problem as a statistical estimation problem in order to define a nearby, but slightlydifferent, multiscale estimation problem that admits efficient solutions for both surface reconstructionandthe calculation of error statistics. In particular, the membrane and thin-plate variational models for surfaces are interpreted as 1/f2prior statistical models for the surface and its gradients, respectively. Such 1/f2behavior is then achieved using a recently introduced class of multiresolution models that admits algorithms with constant per-pixel computational complexity.</description><identifier>ISSN: 1077-3142</identifier><identifier>EISSN: 1090-235X</identifier><identifier>DOI: 10.1006/cviu.1997.0630</identifier><identifier>CODEN: CVIUF4</identifier><language>eng</language><publisher>San Diego, CA: Elsevier Inc</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Exact sciences and technology ; Pattern recognition. Digital image processing. Computational geometry ; Theoretical computing</subject><ispartof>Computer vision and image understanding, 1998-05, Vol.70 (2), p.157-176</ispartof><rights>1998 Academic Press</rights><rights>1998 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-78732ddbef8f261b9160281eacbf3691167a46b93a209a9316e6ee9f34cbdbcf3</citedby><cites>FETCH-LOGICAL-c386t-78732ddbef8f261b9160281eacbf3691167a46b93a209a9316e6ee9f34cbdbcf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1006/cviu.1997.0630$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2231316$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Fieguth, Paul W.</creatorcontrib><creatorcontrib>Karl, William C.</creatorcontrib><creatorcontrib>Willsky, Alan S.</creatorcontrib><title>Efficient Multiresolution Counterparts to Variational Methods for Surface Reconstruction</title><title>Computer vision and image understanding</title><description>Variational methods have been employed with considerable success in computer vision, particularly for surface reconstruction problems. Formulations of this type require the solution of computationally complex Euler–Lagrange partial differential equations (PDEs) to obtain the desired reconstructions. Further, the calculation of reconstruction error covariances for such approaches are usually neglected. In this paper we describe a computationally efficient multiscale approach to surface reconstruction which differs fundamentally from other multiresolution methods that are used to solve the Euler–Lagrange PDEs. Instead, we interpret the variational problem as a statistical estimation problem in order to define a nearby, but slightlydifferent, multiscale estimation problem that admits efficient solutions for both surface reconstructionandthe calculation of error statistics. In particular, the membrane and thin-plate variational models for surfaces are interpreted as 1/f2prior statistical models for the surface and its gradients, respectively. Such 1/f2behavior is then achieved using a recently introduced class of multiresolution models that admits algorithms with constant per-pixel computational complexity.</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Theoretical computing</subject><issn>1077-3142</issn><issn>1090-235X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNp1kElLAzEUgIMoWKtXz3MQbzNmaTOToxQ3aBHc6C1kMi8YmU5qloL_3gkt3jy9B-9724fQJcEVwZjf6J1NFRGirjBn-AhNCBa4pGy-Ps55XZeMzOgpOgvhC2NCZoJM0PrOGKstDLFYpT5aD8H1KVo3FAuXhgh-q3wMRXTFh_JW5YrqixXET9eFwjhfvCZvlIbiBbQbQvRJZ-gcnRjVB7g4xCl6v797WzyWy-eHp8XtstSs4bGsm5rRrmvBNIZy0grCMW0IKN0axgUhvFYz3gqmKBZKMMKBAwjDZrrtWm3YFF3v5269-04QotzYoKHv1QAuBUnr-fj6HI9gtQe1dyF4MHLr7Ub5H0mwzAJlFiizQJkFjg1Xh8kqaNUbrwZtw18XpYyM54xYs8dg_HJnwcuQfWroRpk6ys7Z_zb8AvXShn0</recordid><startdate>19980501</startdate><enddate>19980501</enddate><creator>Fieguth, Paul W.</creator><creator>Karl, William C.</creator><creator>Willsky, Alan S.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19980501</creationdate><title>Efficient Multiresolution Counterparts to Variational Methods for Surface Reconstruction</title><author>Fieguth, Paul W. ; Karl, William C. ; Willsky, Alan S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-78732ddbef8f261b9160281eacbf3691167a46b93a209a9316e6ee9f34cbdbcf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fieguth, Paul W.</creatorcontrib><creatorcontrib>Karl, William C.</creatorcontrib><creatorcontrib>Willsky, Alan S.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer vision and image understanding</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fieguth, Paul W.</au><au>Karl, William C.</au><au>Willsky, Alan S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient Multiresolution Counterparts to Variational Methods for Surface Reconstruction</atitle><jtitle>Computer vision and image understanding</jtitle><date>1998-05-01</date><risdate>1998</risdate><volume>70</volume><issue>2</issue><spage>157</spage><epage>176</epage><pages>157-176</pages><issn>1077-3142</issn><eissn>1090-235X</eissn><coden>CVIUF4</coden><abstract>Variational methods have been employed with considerable success in computer vision, particularly for surface reconstruction problems. Formulations of this type require the solution of computationally complex Euler–Lagrange partial differential equations (PDEs) to obtain the desired reconstructions. Further, the calculation of reconstruction error covariances for such approaches are usually neglected. In this paper we describe a computationally efficient multiscale approach to surface reconstruction which differs fundamentally from other multiresolution methods that are used to solve the Euler–Lagrange PDEs. Instead, we interpret the variational problem as a statistical estimation problem in order to define a nearby, but slightlydifferent, multiscale estimation problem that admits efficient solutions for both surface reconstructionandthe calculation of error statistics. In particular, the membrane and thin-plate variational models for surfaces are interpreted as 1/f2prior statistical models for the surface and its gradients, respectively. Such 1/f2behavior is then achieved using a recently introduced class of multiresolution models that admits algorithms with constant per-pixel computational complexity.</abstract><cop>San Diego, CA</cop><pub>Elsevier Inc</pub><doi>10.1006/cviu.1997.0630</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1077-3142
ispartof Computer vision and image understanding, 1998-05, Vol.70 (2), p.157-176
issn 1077-3142
1090-235X
language eng
recordid cdi_proquest_miscellaneous_27507750
source ScienceDirect Journals (5 years ago - present)
subjects Algorithmics. Computability. Computer arithmetics
Applied sciences
Artificial intelligence
Computer science
control theory
systems
Exact sciences and technology
Pattern recognition. Digital image processing. Computational geometry
Theoretical computing
title Efficient Multiresolution Counterparts to Variational Methods for Surface Reconstruction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T10%3A28%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20Multiresolution%20Counterparts%20to%20Variational%20Methods%20for%20Surface%20Reconstruction&rft.jtitle=Computer%20vision%20and%20image%20understanding&rft.au=Fieguth,%20Paul%20W.&rft.date=1998-05-01&rft.volume=70&rft.issue=2&rft.spage=157&rft.epage=176&rft.pages=157-176&rft.issn=1077-3142&rft.eissn=1090-235X&rft.coden=CVIUF4&rft_id=info:doi/10.1006/cviu.1997.0630&rft_dat=%3Cproquest_cross%3E27507750%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27507750&rft_id=info:pmid/&rft_els_id=S1077314297906305&rfr_iscdi=true