Effect of Reinforcement Orientation on the Impact Fracture of Carbon Fiber Reinforced 7075-T6 Aluminum Matrix Composite

The impact response and fracture characteristics of 7075-T6 aluminum alloy reinforced with 10% Vf laminated carbon fiber are studied experimentally with regard to the relations between mechanical properties, reinforcement orientation, strain rate and temperature. Cylindrical specimens prepared with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials Transactions, JIM JIM, 2000, Vol.41(8), pp.1055-1063
Hauptverfasser: Lee, Woei-Shyan, Sue, Wu-Chung, Chiou, Su-Tang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1063
container_issue 8
container_start_page 1055
container_title Materials Transactions, JIM
container_volume 41
creator Lee, Woei-Shyan
Sue, Wu-Chung
Chiou, Su-Tang
description The impact response and fracture characteristics of 7075-T6 aluminum alloy reinforced with 10% Vf laminated carbon fiber are studied experimentally with regard to the relations between mechanical properties, reinforcement orientation, strain rate and temperature. Cylindrical specimens prepared with two different fiber layer orientations, transverse and longitudinal, are deformed over a strain rate range of 10−2 to 5×103 s−1 at temperatures from 25 to 300°C using a Saginomia 100 metal forming machine for low strain rates and a compressive split-Hopkinson bar for high strain rates. The resulting data indicate that the strength of the composite is strongly strain rate and temperature sensitive, and that the strength is considerably improved if the fiber layers are aligned in the transverse orientation. In the high strain rate region, the transverse composite displays a stronger rate sensitivity than the longitudinal composite. The activation volume of the composite changes significantly with variation of temperature and work hardening stress, but changes only slightly with fiber layer orientation. Fracture feature observations reveal that the transverse specimens failed mainly by shear along a plane of maximum shear stress, while the longitudinal specimens failed by longitudinal interfacial splitting due to relatively weak fiber/matrix bonding and lower matrix constraints. Under high temperature conditions, all specimens showed extensive plastic matrix flow and exhibited a pronounced tendency for the adhesion of matrix to the fiber surface.
doi_str_mv 10.2320/matertrans1989.41.1055
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_27501281</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>27501281</sourcerecordid><originalsourceid>FETCH-LOGICAL-c579t-3afc11b152d7b8b688ed55c2c910a2a8ebda8092ac7cd0aad2978ec2f6411eca3</originalsourceid><addsrcrecordid>eNqNkctKBDEQRYMoOD5-QbJy12Mq_UqWMjgqKoIouAvV6WqN9GNM0qh_bw8jiuBCKG4t6pzaXMaOQMxlKsVJh5F89NgH0ErPM5iDyPMtNpNZKpOshMdtNhMaigSUhF22F8KLEMUEZzP2dtY0ZCMfGn5Hrm8Gb6mjPvJb76aF0Q09nyY-E7_sVjihSz_l6GntLNBX03XpKvI_D2peijJP7gt-2o6d68eO32D07p0vhm41BBfpgO002AY6_Nr77GF5dr-4SK5vzy8Xp9eJzUsdkxQbC1BBLuuyUlWhFNV5bqXVIFCioqpGJbREW9paINZSl4qsbIoMgCym--x483flh9eRQjSdC5baFnsaxmBkmQuQCv4BZrrICj2BxQa0fgjBU2NW3nXoPwwIsy7E_C7EZGDWhUzi1UZ8CRGf6FtDH51t6Q9NbWJtf1P2Gb2hPv0EkASeqg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27496469</pqid></control><display><type>article</type><title>Effect of Reinforcement Orientation on the Impact Fracture of Carbon Fiber Reinforced 7075-T6 Aluminum Matrix Composite</title><source>J-STAGE Free</source><creator>Lee, Woei-Shyan ; Sue, Wu-Chung ; Chiou, Su-Tang</creator><creatorcontrib>Lee, Woei-Shyan ; Sue, Wu-Chung ; Chiou, Su-Tang</creatorcontrib><description>The impact response and fracture characteristics of 7075-T6 aluminum alloy reinforced with 10% Vf laminated carbon fiber are studied experimentally with regard to the relations between mechanical properties, reinforcement orientation, strain rate and temperature. Cylindrical specimens prepared with two different fiber layer orientations, transverse and longitudinal, are deformed over a strain rate range of 10−2 to 5×103 s−1 at temperatures from 25 to 300°C using a Saginomia 100 metal forming machine for low strain rates and a compressive split-Hopkinson bar for high strain rates. The resulting data indicate that the strength of the composite is strongly strain rate and temperature sensitive, and that the strength is considerably improved if the fiber layers are aligned in the transverse orientation. In the high strain rate region, the transverse composite displays a stronger rate sensitivity than the longitudinal composite. The activation volume of the composite changes significantly with variation of temperature and work hardening stress, but changes only slightly with fiber layer orientation. Fracture feature observations reveal that the transverse specimens failed mainly by shear along a plane of maximum shear stress, while the longitudinal specimens failed by longitudinal interfacial splitting due to relatively weak fiber/matrix bonding and lower matrix constraints. Under high temperature conditions, all specimens showed extensive plastic matrix flow and exhibited a pronounced tendency for the adhesion of matrix to the fiber surface.</description><identifier>ISSN: 0916-1821</identifier><identifier>EISSN: 2432-471X</identifier><identifier>DOI: 10.2320/matertrans1989.41.1055</identifier><language>eng</language><publisher>The Japan Institute of Metals</publisher><subject>effect of reinforcement orientation ; impact fracture mechanism ; impact response ; matrix adhesion ; metal-matrix composite</subject><ispartof>Materials Transactions, JIM, 2000, Vol.41(8), pp.1055-1063</ispartof><rights>The Japan Institute of Metals</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c579t-3afc11b152d7b8b688ed55c2c910a2a8ebda8092ac7cd0aad2978ec2f6411eca3</citedby><cites>FETCH-LOGICAL-c579t-3afc11b152d7b8b688ed55c2c910a2a8ebda8092ac7cd0aad2978ec2f6411eca3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1877,27901,27902</link.rule.ids></links><search><creatorcontrib>Lee, Woei-Shyan</creatorcontrib><creatorcontrib>Sue, Wu-Chung</creatorcontrib><creatorcontrib>Chiou, Su-Tang</creatorcontrib><title>Effect of Reinforcement Orientation on the Impact Fracture of Carbon Fiber Reinforced 7075-T6 Aluminum Matrix Composite</title><title>Materials Transactions, JIM</title><addtitle>Mater. Trans., JIM</addtitle><description>The impact response and fracture characteristics of 7075-T6 aluminum alloy reinforced with 10% Vf laminated carbon fiber are studied experimentally with regard to the relations between mechanical properties, reinforcement orientation, strain rate and temperature. Cylindrical specimens prepared with two different fiber layer orientations, transverse and longitudinal, are deformed over a strain rate range of 10−2 to 5×103 s−1 at temperatures from 25 to 300°C using a Saginomia 100 metal forming machine for low strain rates and a compressive split-Hopkinson bar for high strain rates. The resulting data indicate that the strength of the composite is strongly strain rate and temperature sensitive, and that the strength is considerably improved if the fiber layers are aligned in the transverse orientation. In the high strain rate region, the transverse composite displays a stronger rate sensitivity than the longitudinal composite. The activation volume of the composite changes significantly with variation of temperature and work hardening stress, but changes only slightly with fiber layer orientation. Fracture feature observations reveal that the transverse specimens failed mainly by shear along a plane of maximum shear stress, while the longitudinal specimens failed by longitudinal interfacial splitting due to relatively weak fiber/matrix bonding and lower matrix constraints. Under high temperature conditions, all specimens showed extensive plastic matrix flow and exhibited a pronounced tendency for the adhesion of matrix to the fiber surface.</description><subject>effect of reinforcement orientation</subject><subject>impact fracture mechanism</subject><subject>impact response</subject><subject>matrix adhesion</subject><subject>metal-matrix composite</subject><issn>0916-1821</issn><issn>2432-471X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNqNkctKBDEQRYMoOD5-QbJy12Mq_UqWMjgqKoIouAvV6WqN9GNM0qh_bw8jiuBCKG4t6pzaXMaOQMxlKsVJh5F89NgH0ErPM5iDyPMtNpNZKpOshMdtNhMaigSUhF22F8KLEMUEZzP2dtY0ZCMfGn5Hrm8Gb6mjPvJb76aF0Q09nyY-E7_sVjihSz_l6GntLNBX03XpKvI_D2peijJP7gt-2o6d68eO32D07p0vhm41BBfpgO002AY6_Nr77GF5dr-4SK5vzy8Xp9eJzUsdkxQbC1BBLuuyUlWhFNV5bqXVIFCioqpGJbREW9paINZSl4qsbIoMgCym--x483flh9eRQjSdC5baFnsaxmBkmQuQCv4BZrrICj2BxQa0fgjBU2NW3nXoPwwIsy7E_C7EZGDWhUzi1UZ8CRGf6FtDH51t6Q9NbWJtf1P2Gb2hPv0EkASeqg</recordid><startdate>20000801</startdate><enddate>20000801</enddate><creator>Lee, Woei-Shyan</creator><creator>Sue, Wu-Chung</creator><creator>Chiou, Su-Tang</creator><general>The Japan Institute of Metals</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7QF</scope><scope>8BQ</scope><scope>JG9</scope></search><sort><creationdate>20000801</creationdate><title>Effect of Reinforcement Orientation on the Impact Fracture of Carbon Fiber Reinforced 7075-T6 Aluminum Matrix Composite</title><author>Lee, Woei-Shyan ; Sue, Wu-Chung ; Chiou, Su-Tang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c579t-3afc11b152d7b8b688ed55c2c910a2a8ebda8092ac7cd0aad2978ec2f6411eca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>effect of reinforcement orientation</topic><topic>impact fracture mechanism</topic><topic>impact response</topic><topic>matrix adhesion</topic><topic>metal-matrix composite</topic><toplevel>online_resources</toplevel><creatorcontrib>Lee, Woei-Shyan</creatorcontrib><creatorcontrib>Sue, Wu-Chung</creatorcontrib><creatorcontrib>Chiou, Su-Tang</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Aluminium Industry Abstracts</collection><collection>METADEX</collection><collection>Materials Research Database</collection><jtitle>Materials Transactions, JIM</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Woei-Shyan</au><au>Sue, Wu-Chung</au><au>Chiou, Su-Tang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of Reinforcement Orientation on the Impact Fracture of Carbon Fiber Reinforced 7075-T6 Aluminum Matrix Composite</atitle><jtitle>Materials Transactions, JIM</jtitle><addtitle>Mater. Trans., JIM</addtitle><date>2000-08-01</date><risdate>2000</risdate><volume>41</volume><issue>8</issue><spage>1055</spage><epage>1063</epage><pages>1055-1063</pages><issn>0916-1821</issn><eissn>2432-471X</eissn><abstract>The impact response and fracture characteristics of 7075-T6 aluminum alloy reinforced with 10% Vf laminated carbon fiber are studied experimentally with regard to the relations between mechanical properties, reinforcement orientation, strain rate and temperature. Cylindrical specimens prepared with two different fiber layer orientations, transverse and longitudinal, are deformed over a strain rate range of 10−2 to 5×103 s−1 at temperatures from 25 to 300°C using a Saginomia 100 metal forming machine for low strain rates and a compressive split-Hopkinson bar for high strain rates. The resulting data indicate that the strength of the composite is strongly strain rate and temperature sensitive, and that the strength is considerably improved if the fiber layers are aligned in the transverse orientation. In the high strain rate region, the transverse composite displays a stronger rate sensitivity than the longitudinal composite. The activation volume of the composite changes significantly with variation of temperature and work hardening stress, but changes only slightly with fiber layer orientation. Fracture feature observations reveal that the transverse specimens failed mainly by shear along a plane of maximum shear stress, while the longitudinal specimens failed by longitudinal interfacial splitting due to relatively weak fiber/matrix bonding and lower matrix constraints. Under high temperature conditions, all specimens showed extensive plastic matrix flow and exhibited a pronounced tendency for the adhesion of matrix to the fiber surface.</abstract><pub>The Japan Institute of Metals</pub><doi>10.2320/matertrans1989.41.1055</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0916-1821
ispartof Materials Transactions, JIM, 2000, Vol.41(8), pp.1055-1063
issn 0916-1821
2432-471X
language eng
recordid cdi_proquest_miscellaneous_27501281
source J-STAGE Free
subjects effect of reinforcement orientation
impact fracture mechanism
impact response
matrix adhesion
metal-matrix composite
title Effect of Reinforcement Orientation on the Impact Fracture of Carbon Fiber Reinforced 7075-T6 Aluminum Matrix Composite
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T16%3A57%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20Reinforcement%20Orientation%20on%20the%20Impact%20Fracture%20of%20Carbon%20Fiber%20Reinforced%207075-T6%20Aluminum%20Matrix%20Composite&rft.jtitle=Materials%20Transactions,%20JIM&rft.au=Lee,%20Woei-Shyan&rft.date=2000-08-01&rft.volume=41&rft.issue=8&rft.spage=1055&rft.epage=1063&rft.pages=1055-1063&rft.issn=0916-1821&rft.eissn=2432-471X&rft_id=info:doi/10.2320/matertrans1989.41.1055&rft_dat=%3Cproquest_cross%3E27501281%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27496469&rft_id=info:pmid/&rfr_iscdi=true